alex_bn_lee

导航

< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5

统计

【518】1D CNN原理详细说明

参考:Convolutional Neural Networks for Text Classification

参考:【book】- Neural Network Methods for NLP

参考:自然语言处理中CNN模型几种常见的Max Pooling操作


  原图:

       

 

   简单说明:

  个人理解:

  关于一维卷积神经网络的具体实现过程全网说的比较隐晦,貌似默认大家都懂,但是之前一直没看懂,按照自己的理解画出下图。

 

  • filter 做点积再求和,每次只生成 1 个数字
  • 整个数据走一遍,生成一个向量
  • 每一个 filter 生成一个向量
  • 组合在一起就是一个新的二维向量

  对于 keras 实现 1D CNN 的说明

  语法:

1
keras.layers.convolutional.Conv1D(filters, kernel_size, strides=1, padding='valid', dilation_rate=1, activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None)

  说明:

  • filters:卷积核的数目(即输出的维度),有几个 filter,最终就是几个维度(影响单词向量维度

  • kernel_size:整数或由单个整数构成的list/tuple,卷积核的空域或时域窗长度(影响文本长度的维度

  • strides:整数或由单个整数构成的list/tuple,为卷积的步长。任何不为1的strides均与任何不为1的dilation_rate均不兼容

  • padding:补0策略,为“valid”, “same” 或“causal”,“causal”将产生因果(膨胀的)卷积,即output[t]不依赖于input[t+1:]。当对不能违反时间顺序的时序信号建模时有用。参考WaveNet: A Generative Model for Raw Audio, section 2.1.。“valid”代表只进行有效的卷积,即对边界数据不处理。“same”代表保留边界处的卷积结果,通常会导致输出shape与输入shape相同。

  • activation:激活函数,为预定义的激活函数名(参考激活函数),或逐元素(element-wise)的Theano函数。如果不指定该参数,将不会使用任何激活函数(即使用线性激活函数:a(x)=x)

 

  测试输出维度:

1
2
3
4
5
6
>>> import numpy as np
>>> words = np.zeros((20, 30, 40))
>>> import keras
>>> out = keras.layers.Conv1D(33, 5)(words)
>>> out.shape
TensorShape([20, 26, 33])

  

posted on   McDelfino  阅读(7462)  评论(0编辑  收藏  举报

编辑推荐:
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
阅读排行:
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· .NET10 - 预览版1新功能体验(一)
历史上的今天:
2019-01-03 【346】TF-IDF
2018-01-03 【285】ArcPy 暗色窗体设置
点击右上角即可分享
微信分享提示