【452】pandas筛选出表中满足另一个表所有条件的数据
使用 pd.merge 来实现
on 表示查询的 columns,如果都有 id,那么这是很好的区别项,找到 id 相同的进行merge。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 | >>> import numpy as np >>> import pandas as pd >>> data1 = { 'one' : pd.Series([ 1 , 2 , 3 ]), 'two' : pd.Series([ 11 , 22 , 33 ]) } >>> df1 = pd.DataFrame(data = data1) >>> df1 one two 0 1 11 1 2 22 2 3 33 >>> data2 = { 'one' : pd.Series([ 1 , 2 , 3 , 4 , 5 , 6 ]), 'two' : pd.Series([ 11 , 22 , 33 ]), 'three' : pd.Series([ 111 , 222 , 333 ]), 'four' : pd.Series([ 1111 , 2222 , 3333 , 4444 , 5555 , 6666 ]) } >>> df2 = pd.DataFrame(data = data2) >>> df2 one two three four 0 1 11.0 111.0 1111 1 2 22.0 222.0 2222 2 3 33.0 333.0 3333 3 4 NaN NaN 4444 4 5 NaN NaN 5555 5 6 NaN NaN 6666 >>> df2[df2[ 'one' ]< 3 ] one two three four 0 1 11.0 111.0 1111 1 2 22.0 222.0 2222 >>> df = pd.merge(df1, df2, how = 'inner' ) >>> df one two three four 0 1 11 111.0 1111 1 2 22 222.0 2222 2 3 33 333.0 3333 >>> df1 one two 0 1 11 1 2 22 2 3 33 >>> df2 one two three four 0 1 11.0 111.0 1111 1 2 22.0 222.0 2222 2 3 33.0 333.0 3333 3 4 NaN NaN 4444 4 5 NaN NaN 5555 5 6 NaN NaN 6666 >>> pd.merge(df1, df2, how = 'inner' ) one two three four 0 1 11 111.0 1111 1 2 22 222.0 2222 2 3 33 333.0 3333 >>> pd.merge(df2, df1, how = 'inner' ) one two three four 0 1 11.0 111.0 1111 1 2 22.0 222.0 2222 2 3 33.0 333.0 3333 >>> five = pd.Series([ 1 , 2 , 3 , 4 , 5 , 6 ]) >>> df2[ 'five' ] = five >>> df2 one two three four five 0 1 11.0 111.0 1111 1 1 2 22.0 222.0 2222 2 2 3 33.0 333.0 3333 3 3 4 NaN NaN 4444 4 4 5 NaN NaN 5555 5 5 6 NaN NaN 6666 6 >>> df1 one two 0 1 11 1 2 22 2 3 33 >>> pd.merge(df2, df1, how = 'inner' ) one two three four five 0 1 11.0 111.0 1111 1 1 2 22.0 222.0 2222 2 2 3 33.0 333.0 3333 3 >>> pd.merge(df1, df2, how = 'inner' ) one two three four five 0 1 11 111.0 1111 1 1 2 22 222.0 2222 2 2 3 33 333.0 3333 3 >>> df1 one two 0 1 11 1 2 22 2 3 33 >>> df2 one two three four five 0 1 11.0 111.0 1111 1 1 2 22.0 222.0 2222 2 2 3 33.0 333.0 3333 3 3 4 NaN NaN 4444 4 4 5 NaN NaN 5555 5 5 6 NaN NaN 6666 6 >>> six = pd.Series([ - 1 , - 2 , - 3 ]) >>> df1[ 'six' ] = six >>> df1 one two six 0 1 11 - 1 1 2 22 - 2 2 3 33 - 3 >>> df2 one two three four five 0 1 11.0 111.0 1111 1 1 2 22.0 222.0 2222 2 2 3 33.0 333.0 3333 3 3 4 NaN NaN 4444 4 4 5 NaN NaN 5555 5 5 6 NaN NaN 6666 6 >>> pd.merge(df1, df2, how = 'inner' ) one two six three four five 0 1 11 - 1 111.0 1111 1 1 2 22 - 2 222.0 2222 2 2 3 33 - 3 333.0 3333 3 >>> pd.merge(df2, df1, how = 'inner' ) one two three four five six 0 1 11.0 111.0 1111 1 - 1 1 2 22.0 222.0 2222 2 - 2 2 3 33.0 333.0 3333 3 - 3 |
posted on 2019-11-16 08:22 McDelfino 阅读(1203) 评论(0) 编辑 收藏 举报
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· .NET10 - 预览版1新功能体验(一)
2017-11-16 【269】蓝牙键盘连接
2015-11-16 【177】IDL常见问题解答
2011-11-16 【002】◀▶ C#学习(一) - C#编程基础
2011-11-16 【001】学习计划 - 开始学习C#,用C#