【400】numpy.pad 为数组加垫(迷宫类题目)
举例说明:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 | import numpy as np a = np.zeros(( 3 , 4 ), dtype = int ) a array([[ 0 , 0 , 0 , 0 ], [ 0 , 0 , 0 , 0 ], [ 0 , 0 , 0 , 0 ]]) # pad(array, pad_width, mode, **kwargs) # array: array_like # pad_width: ((1, 2), (3, 4)) # 1: width of top # 2: width of bottom # 3: width of left # 4: width of right # mode: str or function # 'constant': Pads with a constant value # constant_values: Used in 'constant'. The values to set the padded values for each axis. # ((1, 2), (3, 4)) # 1: value of top # 2: value of bottom # 3: vlaue of left # 4: vlaue of right np.pad(a, (( 1 , 2 ), ( 3 , 4 )), 'constant' , constant_values = (( 1 , 2 ), ( 3 , 4 ))) array([[ 3 , 3 , 3 , 1 , 1 , 1 , 1 , 4 , 4 , 4 , 4 ], [ 3 , 3 , 3 , 0 , 0 , 0 , 0 , 4 , 4 , 4 , 4 ], [ 3 , 3 , 3 , 0 , 0 , 0 , 0 , 4 , 4 , 4 , 4 ], [ 3 , 3 , 3 , 0 , 0 , 0 , 0 , 4 , 4 , 4 , 4 ], [ 3 , 3 , 3 , 2 , 2 , 2 , 2 , 4 , 4 , 4 , 4 ], [ 3 , 3 , 3 , 2 , 2 , 2 , 2 , 4 , 4 , 4 , 4 ]]) # (1, 2) # top:bottom=1:2 # left:right=1:2 np.pad(a, ( 1 , 2 ), 'constant' , constant_values = ( 1 , 2 )) array([[ 1 , 1 , 1 , 1 , 1 , 2 , 2 ], [ 1 , 0 , 0 , 0 , 0 , 2 , 2 ], [ 1 , 0 , 0 , 0 , 0 , 2 , 2 ], [ 1 , 0 , 0 , 0 , 0 , 2 , 2 ], [ 1 , 2 , 2 , 2 , 2 , 2 , 2 ], [ 1 , 2 , 2 , 2 , 2 , 2 , 2 ]]) a = [ 1 , 2 , 3 , 4 , 5 ] np.pad(a, ( 2 , 3 ), 'constant' , constant_values = ( 4 , 6 )) array([ 4 , 4 , 1 , 2 , 3 , 4 , 5 , 6 , 6 , 6 ]) # mode: 'edge': Pads with the edge values of array np.pad(a, ( 2 , 3 ), 'edge' ) array([ 1 , 1 , 1 , 2 , 3 , 4 , 5 , 5 , 5 , 5 ]) np.pad(a, ( 2 , 3 ), 'linear_ramp' , end_values = ( 5 , 1 )) array([ 5 , 3 , 1 , 2 , 3 , 4 , 5 , 4 , 2 , 1 ]) np.pad(a, ( 2 , 3 ), 'maximum' ) array([ 5 , 5 , 1 , 2 , 3 , 4 , 5 , 5 , 5 , 5 ]) np.pad(a, ( 2 , 3 ), 'mean' ) array([ 3 , 3 , 1 , 2 , 3 , 4 , 5 , 3 , 3 , 3 ]) np.pad(a, ( 2 , 3 ), 'median' ) array([ 3 , 3 , 1 , 2 , 3 , 4 , 5 , 3 , 3 , 3 ]) a = [[ 1 , 2 ], [ 3 , 4 ]] np.pad(a, ( 2 , 3 ), 'minimum' ) array([[ 1 , 1 , 1 , 2 , 1 , 1 , 1 ], [ 1 , 1 , 1 , 2 , 1 , 1 , 1 ], [ 1 , 1 , 1 , 2 , 1 , 1 , 1 ], [ 3 , 3 , 3 , 4 , 3 , 3 , 3 ], [ 1 , 1 , 1 , 2 , 1 , 1 , 1 ], [ 1 , 1 , 1 , 2 , 1 , 1 , 1 ], [ 1 , 1 , 1 , 2 , 1 , 1 , 1 ]]) |
语法说明:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 | >>> help (np.pad) Help on function pad in module numpy.lib.arraypad: pad(array, pad_width, mode, * * kwargs) Pads an array. Parameters - - - - - - - - - - array : array_like of rank N Input array pad_width : {sequence, array_like, int } Number of values padded to the edges of each axis. ((before_1, after_1), ... (before_N, after_N)) unique pad widths for each axis. ((before, after),) yields same before and after pad for each axis. (pad,) or int is a shortcut for before = after = pad width for all axes. mode : str or function One of the following string values or a user supplied function. 'constant' Pads with a constant value. 'edge' Pads with the edge values of array. 'linear_ramp' Pads with the linear ramp between end_value and the array edge value. 'maximum' Pads with the maximum value of all or part of the vector along each axis. 'mean' Pads with the mean value of all or part of the vector along each axis. 'median' Pads with the median value of all or part of the vector along each axis. 'minimum' Pads with the minimum value of all or part of the vector along each axis. 'reflect' Pads with the reflection of the vector mirrored on the first and last values of the vector along each axis. 'symmetric' Pads with the reflection of the vector mirrored along the edge of the array. 'wrap' Pads with the wrap of the vector along the axis. The first values are used to pad the end and the end values are used to pad the beginning. <function> Padding function, see Notes. stat_length : sequence or int , optional Used in 'maximum' , 'mean' , 'median' , and 'minimum' . Number of values at edge of each axis used to calculate the statistic value. ((before_1, after_1), ... (before_N, after_N)) unique statistic lengths for each axis. ((before, after),) yields same before and after statistic lengths for each axis. (stat_length,) or int is a shortcut for before = after = statistic length for all axes. Default is `` None ``, to use the entire axis. constant_values : sequence or int , optional Used in 'constant' . The values to set the padded values for each axis. ((before_1, after_1), ... (before_N, after_N)) unique pad constants for each axis. ((before, after),) yields same before and after constants for each axis. (constant,) or int is a shortcut for before = after = constant for all axes. Default is 0. end_values : sequence or int , optional Used in 'linear_ramp' . The values used for the ending value of the linear_ramp and that will form the edge of the padded array. ((before_1, after_1), ... (before_N, after_N)) unique end values for each axis. ((before, after),) yields same before and after end values for each axis. (constant,) or int is a shortcut for before = after = end value for all axes. Default is 0. reflect_type : { 'even' , 'odd' }, optional Used in 'reflect' , and 'symmetric' . The 'even' style is the default with an unaltered reflection around the edge value. For the 'odd' style, the extended part of the array is created by subtracting the reflected values from two times the edge value. Returns - - - - - - - pad : ndarray Padded array of rank equal to `array` with shape increased according to `pad_width`. Notes - - - - - .. versionadded:: 1.7 . 0 For an array with rank greater than 1 , some of the padding of later axes is calculated from padding of previous axes. This is easiest to think about with a rank 2 array where the corners of the padded array are calculated by using padded values from the first axis. The padding function, if used, should return a rank 1 array equal in length to the vector argument with padded values replaced. It has the following signature:: padding_func(vector, iaxis_pad_width, iaxis, kwargs) where vector : ndarray A rank 1 array already padded with zeros. Padded values are vector[:pad_tuple[ 0 ]] and vector[ - pad_tuple[ 1 ]:]. iaxis_pad_width : tuple A 2 - tuple of ints, iaxis_pad_width[ 0 ] represents the number of values padded at the beginning of vector where iaxis_pad_width[ 1 ] represents the number of values padded at the end of vector. iaxis : int The axis currently being calculated. kwargs : dict Any keyword arguments the function requires. Examples - - - - - - - - >>> a = [ 1 , 2 , 3 , 4 , 5 ] >>> np.pad(a, ( 2 , 3 ), 'constant' , constant_values = ( 4 , 6 )) array([ 4 , 4 , 1 , 2 , 3 , 4 , 5 , 6 , 6 , 6 ]) >>> np.pad(a, ( 2 , 3 ), 'edge' ) array([ 1 , 1 , 1 , 2 , 3 , 4 , 5 , 5 , 5 , 5 ]) >>> np.pad(a, ( 2 , 3 ), 'linear_ramp' , end_values = ( 5 , - 4 )) array([ 5 , 3 , 1 , 2 , 3 , 4 , 5 , 2 , - 1 , - 4 ]) >>> np.pad(a, ( 2 ,), 'maximum' ) array([ 5 , 5 , 1 , 2 , 3 , 4 , 5 , 5 , 5 ]) >>> np.pad(a, ( 2 ,), 'mean' ) array([ 3 , 3 , 1 , 2 , 3 , 4 , 5 , 3 , 3 ]) >>> np.pad(a, ( 2 ,), 'median' ) array([ 3 , 3 , 1 , 2 , 3 , 4 , 5 , 3 , 3 ]) >>> a = [[ 1 , 2 ], [ 3 , 4 ]] >>> np.pad(a, (( 3 , 2 ), ( 2 , 3 )), 'minimum' ) array([[ 1 , 1 , 1 , 2 , 1 , 1 , 1 ], [ 1 , 1 , 1 , 2 , 1 , 1 , 1 ], [ 1 , 1 , 1 , 2 , 1 , 1 , 1 ], [ 1 , 1 , 1 , 2 , 1 , 1 , 1 ], [ 3 , 3 , 3 , 4 , 3 , 3 , 3 ], [ 1 , 1 , 1 , 2 , 1 , 1 , 1 ], [ 1 , 1 , 1 , 2 , 1 , 1 , 1 ]]) >>> a = [ 1 , 2 , 3 , 4 , 5 ] >>> np.pad(a, ( 2 , 3 ), 'reflect' ) array([ 3 , 2 , 1 , 2 , 3 , 4 , 5 , 4 , 3 , 2 ]) >>> np.pad(a, ( 2 , 3 ), 'reflect' , reflect_type = 'odd' ) array([ - 1 , 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 ]) >>> np.pad(a, ( 2 , 3 ), 'symmetric' ) array([ 2 , 1 , 1 , 2 , 3 , 4 , 5 , 5 , 4 , 3 ]) >>> np.pad(a, ( 2 , 3 ), 'symmetric' , reflect_type = 'odd' ) array([ 0 , 1 , 1 , 2 , 3 , 4 , 5 , 5 , 6 , 7 ]) >>> np.pad(a, ( 2 , 3 ), 'wrap' ) array([ 4 , 5 , 1 , 2 , 3 , 4 , 5 , 1 , 2 , 3 ]) >>> def pad_with(vector, pad_width, iaxis, kwargs): ... pad_value = kwargs.get( 'padder' , 10 ) ... vector[:pad_width[ 0 ]] = pad_value ... vector[ - pad_width[ 1 ]:] = pad_value ... return vector >>> a = np.arange( 6 ) >>> a = a.reshape(( 2 , 3 )) >>> np.pad(a, 2 , pad_with) array([[ 10 , 10 , 10 , 10 , 10 , 10 , 10 ], [ 10 , 10 , 10 , 10 , 10 , 10 , 10 ], [ 10 , 10 , 0 , 1 , 2 , 10 , 10 ], [ 10 , 10 , 3 , 4 , 5 , 10 , 10 ], [ 10 , 10 , 10 , 10 , 10 , 10 , 10 ], [ 10 , 10 , 10 , 10 , 10 , 10 , 10 ]]) >>> np.pad(a, 2 , pad_with, padder = 100 ) array([[ 100 , 100 , 100 , 100 , 100 , 100 , 100 ], [ 100 , 100 , 100 , 100 , 100 , 100 , 100 ], [ 100 , 100 , 0 , 1 , 2 , 100 , 100 ], [ 100 , 100 , 3 , 4 , 5 , 100 , 100 ], [ 100 , 100 , 100 , 100 , 100 , 100 , 100 ], [ 100 , 100 , 100 , 100 , 100 , 100 , 100 ]]) |
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· .NET10 - 预览版1新功能体验(一)
2012-04-20 【034】◀▶ 学习网站 & 问题解决