【364】SVM 通过 sklearn 可视化实现
先看下效果图:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 | # 先调入需要的模块 import numpy as np import matplotlib.pyplot as plt from sklearn import svm import seaborn as sb # 生成几个数据点 data = np.array([ [ 0.1 , 0.7 ], [ 0.3 , 0.6 ], [ 0.4 , 0.1 ], [ 0.5 , 0.4 ], [ 0.8 , 0.04 ], [ 0.42 , 0.6 ], [ 0.9 , 0.4 ], [ 0.6 , 0.5 ], [ 0.7 , 0.2 ], [ 0.7 , 0.67 ], [ 0.27 , 0.8 ], [ 0.5 , 0.72 ] ]) target = [ 1 ] * 6 + [ 0 ] * 6 x_line = np.linspace( 0 , 1 , 100 ) y_line = 1 - x_line plt.scatter(data[: 6 , 0 ], data[: 6 , 1 ], marker = 'o' , s = 100 , lw = 3 ) plt.scatter(data[ 6 :, 0 ], data[ 6 :, 1 ], marker = 'x' , s = 100 , lw = 3 ) plt.plot(x_line, y_line) # 定义计算域、文字说明等 C = 0.0001 # SVM regularization parameter, since Scikit-learn doesn't allow C=0 # linear_svc = svm.SVC(kernel='linear', C=C).fit(data, target) # create a mesh to plot in h = 0.002 x_min, x_max = data[:, 0 ]. min () - 0.2 , data[:, 0 ]. max () + 0.2 y_min, y_max = data[:, 1 ]. min () - 0.2 , data[:, 1 ]. max () + 0.2 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # title for the plots titles = [ 'SVC with linear kernel' , 'SVC with RBF kernel' , 'SVC with polynomial (degree 3) kernel' ] # RBF Kernel plt.figure(figsize = ( 16 , 15 )) for i, gamma in enumerate ([ 1 , 5 , 15 , 35 , 45 , 55 ]): rbf_svc = svm.SVC(kernel = 'rbf' , gamma = gamma, C = C).fit(data, target) # ravel - flatten # c_ - vstack # #把后面两个压扁之后变成了x1和x2,然后进行判断,得到结果在压缩成一个矩形 Z = rbf_svc.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.subplot( 3 , 2 , i + 1 ) plt.subplots_adjust(wspace = 0.4 , hspace = 0.4 ) plt.contourf(xx, yy, Z, cmap = plt.cm.ocean, alpha = 0.6 ) # Plot the training points plt.scatter(data[: 6 , 0 ], data[: 6 , 1 ], marker = 'o' , color = 'r' , s = 100 , lw = 3 ) plt.scatter(data[ 6 :, 0 ], data[ 6 :, 1 ], marker = 'x' , color = 'k' , s = 100 , lw = 3 ) plt.title( 'RBF SVM with $\gamma=$' + str (gamma)) plt.show() |
分类:
AI Related
posted on 2019-01-29 16:41 McDelfino 阅读(3949) 评论(0) 编辑 收藏 举报
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· .NET10 - 预览版1新功能体验(一)
2018-01-29 【299】◀▶ IDL - LIST 函数
2018-01-29 【298】◀▶ IDL 系统过程&函数