alex_bn_lee

导航

< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5

统计

【350】机器学习中的线性代数之矩阵求导

参考:机器学习中的线性代数之矩阵求导

参考:Matrix calculus - Wikipedia

矩阵求导(Matrix Derivative)也称作矩阵微分(Matrix Differential),在机器学习、图像处理、最优化等领域的公式推导中经常用到。

布局(Layout):在矩阵求导中有两种布局,分别为分母布局(denominator layout)分子布局(numerator layout)。这两种不同布局的求导规则是不一样的。

个人理解:

Numerator Layout:布局按照分子的排列,例如分子的m列,那么结果的m列是对应分子的,与分母正好相反,分母如果为n列,对应的n行,比较常用。

Denominator Layout:与上面正好相反,结果正好是转置矩阵。

Numerator-layout notation

Using numerator-layout notation, we have:

yx=[yx1yx2yxn].

yx=[y1xy2xymx].

yx=[y1x1y1x2y1xny2x1y2x2y2xnymx1ymx2ymxn].

yX=[yx11yx21yxp1yx12yx22yxp2yx1qyx2qyxpq].

The following definitions are only provided in numerator-layout notation:

Yx=[y11xy12xy1nxy21xy22xy2nxym1xym2xymnx].

dX=[dx11dx12dx1ndx21dx22dx2ndxm1dxm2dxmn].

代码参考:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
$$
{\displaystyle {\frac {\partial y}{\partial \mathbf {x} }}=\left[{\frac {\partial y}{\partial x_{1}}}{\frac {\partial y}{\partial x_{2}}}\cdots {\frac {\partial y}{\partial x_{n}}}\right].}
$$
 
$$
{\displaystyle {\frac {\partial \mathbf {y} }{\partial x}}={\begin{bmatrix}{\frac {\partial y_{1}}{\partial x}}\\{\frac {\partial y_{2}}{\partial x}}\\\vdots \\{\frac {\partial y_{m}}{\partial x}}\\\end{bmatrix}}.}
$$
 
$${\displaystyle {\frac {\partial \mathbf {y} }{\partial \mathbf {x} }}={\begin{bmatrix}{\frac {\partial y_{1}}{\partial x_{1}}}&{\frac {\partial y_{1}}{\partial x_{2}}}&\cdots &{\frac {\partial y_{1}}{\partial x_{n}}}\\{\frac {\partial y_{2}}{\partial x_{1}}}&{\frac {\partial y_{2}}{\partial x_{2}}}&\cdots &{\frac {\partial y_{2}}{\partial x_{n}}}\\\vdots &\vdots &\ddots &\vdots \\{\frac {\partial y_{m}}{\partial x_{1}}}&{\frac {\partial y_{m}}{\partial x_{2}}}&\cdots &{\frac {\partial y_{m}}{\partial x_{n}}}\\\end{bmatrix}}.}
$$
 
$$
\frac{\partial y}{\partial \mathbf{X}} = \begin{bmatrix} \frac{\partial y}{\partial x_{11}} & \frac{\partial y}{\partial x_{21}} & \cdots & \frac{\partial y}{\partial x_{p1}}\\ \frac{\partial y}{\partial x_{12}} & \frac{\partial y}{\partial x_{22}} & \cdots & \frac{\partial y}{\partial x_{p2}}\\ \vdots & \vdots & \ddots & \vdots\\ \frac{\partial y}{\partial x_{1q}} & \frac{\partial y}{\partial x_{2q}} & \cdots & \frac{\partial y}{\partial x_{pq}}\\ \end{bmatrix}.
$$
 
$$
\frac{\partial \mathbf{Y}}{\partial x} = \begin{bmatrix} \frac{\partial y_{11}}{\partial x} & \frac{\partial y_{12}}{\partial x} & \cdots & \frac{\partial y_{1n}}{\partial x}\\ \frac{\partial y_{21}}{\partial x} & \frac{\partial y_{22}}{\partial x} & \cdots & \frac{\partial y_{2n}}{\partial x}\\ \vdots & \vdots & \ddots & \vdots\\ \frac{\partial y_{m1}}{\partial x} & \frac{\partial y_{m2}}{\partial x} & \cdots & \frac{\partial y_{mn}}{\partial x}\\ \end{bmatrix}.
$$
 
$$
d\mathbf{X} = \begin{bmatrix} dx_{11} & dx_{12} & \cdots & dx_{1n}\\ dx_{21} & dx_{22} & \cdots & dx_{2n}\\ \vdots & \vdots & \ddots & \vdots\\ dx_{m1} & dx_{m2} & \cdots & dx_{mn}\\ \end{bmatrix}.
$$

 

posted on   McDelfino  阅读(798)  评论(0编辑  收藏  举报

编辑推荐:
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
阅读排行:
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· .NET10 - 预览版1新功能体验(一)
历史上的今天:
2018-01-19 【293】博客园自动添加样式代码
2013-01-19 【099】论文摘要书写要求【转】
点击右上角即可分享
微信分享提示