【350】机器学习中的线性代数之矩阵求导
参考:Matrix calculus - Wikipedia
矩阵求导(Matrix Derivative)也称作矩阵微分(Matrix Differential),在机器学习、图像处理、最优化等领域的公式推导中经常用到。
布局(Layout):在矩阵求导中有两种布局,分别为分母布局(denominator layout)和分子布局(numerator layout)。这两种不同布局的求导规则是不一样的。
个人理解:
Numerator Layout:布局按照分子的排列,例如分子的m列,那么结果的m列是对应分子的,与分母正好相反,分母如果为n列,对应的n行,比较常用。
Denominator Layout:与上面正好相反,结果正好是转置矩阵。
Numerator-layout notation
Using numerator-layout notation, we have:
∂y∂x=[∂y∂x1∂y∂x2⋯∂y∂xn].
∂y∂x=[∂y1∂x∂y2∂x⋮∂ym∂x].
∂y∂x=[∂y1∂x1∂y1∂x2⋯∂y1∂xn∂y2∂x1∂y2∂x2⋯∂y2∂xn⋮⋮⋱⋮∂ym∂x1∂ym∂x2⋯∂ym∂xn].
∂y∂X=[∂y∂x11∂y∂x21⋯∂y∂xp1∂y∂x12∂y∂x22⋯∂y∂xp2⋮⋮⋱⋮∂y∂x1q∂y∂x2q⋯∂y∂xpq].
The following definitions are only provided in numerator-layout notation:
∂Y∂x=[∂y11∂x∂y12∂x⋯∂y1n∂x∂y21∂x∂y22∂x⋯∂y2n∂x⋮⋮⋱⋮∂ym1∂x∂ym2∂x⋯∂ymn∂x].
dX=[dx11dx12⋯dx1ndx21dx22⋯dx2n⋮⋮⋱⋮dxm1dxm2⋯dxmn].
代码参考:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | $$ {\displaystyle {\frac {\partial y}{\partial \mathbf {x} }}=\left[{\frac {\partial y}{\partial x_{1}}}{\frac {\partial y}{\partial x_{2}}}\cdots {\frac {\partial y}{\partial x_{n}}}\right].} $$ $$ {\displaystyle {\frac {\partial \mathbf {y} }{\partial x}}={\begin{bmatrix}{\frac {\partial y_{1}}{\partial x}}\\{\frac {\partial y_{2}}{\partial x}}\\\vdots \\{\frac {\partial y_{m}}{\partial x}}\\\end{bmatrix}}.} $$ $${\displaystyle {\frac {\partial \mathbf {y} }{\partial \mathbf {x} }}={\begin{bmatrix}{\frac {\partial y_{1}}{\partial x_{1}}}&{\frac {\partial y_{1}}{\partial x_{2}}}&\cdots &{\frac {\partial y_{1}}{\partial x_{n}}}\\{\frac {\partial y_{2}}{\partial x_{1}}}&{\frac {\partial y_{2}}{\partial x_{2}}}&\cdots &{\frac {\partial y_{2}}{\partial x_{n}}}\\\vdots &\vdots &\ddots &\vdots \\{\frac {\partial y_{m}}{\partial x_{1}}}&{\frac {\partial y_{m}}{\partial x_{2}}}&\cdots &{\frac {\partial y_{m}}{\partial x_{n}}}\\\end{bmatrix}}.} $$ $$ \frac{\partial y}{\partial \mathbf{X}} = \begin{bmatrix} \frac{\partial y}{\partial x_{11}} & \frac{\partial y}{\partial x_{21}} & \cdots & \frac{\partial y}{\partial x_{p1}}\\ \frac{\partial y}{\partial x_{12}} & \frac{\partial y}{\partial x_{22}} & \cdots & \frac{\partial y}{\partial x_{p2}}\\ \vdots & \vdots & \ddots & \vdots\\ \frac{\partial y}{\partial x_{1q}} & \frac{\partial y}{\partial x_{2q}} & \cdots & \frac{\partial y}{\partial x_{pq}}\\ \end{bmatrix}. $$ $$ \frac{\partial \mathbf{Y}}{\partial x} = \begin{bmatrix} \frac{\partial y_{11}}{\partial x} & \frac{\partial y_{12}}{\partial x} & \cdots & \frac{\partial y_{1n}}{\partial x}\\ \frac{\partial y_{21}}{\partial x} & \frac{\partial y_{22}}{\partial x} & \cdots & \frac{\partial y_{2n}}{\partial x}\\ \vdots & \vdots & \ddots & \vdots\\ \frac{\partial y_{m1}}{\partial x} & \frac{\partial y_{m2}}{\partial x} & \cdots & \frac{\partial y_{mn}}{\partial x}\\ \end{bmatrix}. $$ $$ d\mathbf{X} = \begin{bmatrix} dx_{11} & dx_{12} & \cdots & dx_{1n}\\ dx_{21} & dx_{22} & \cdots & dx_{2n}\\ \vdots & \vdots & \ddots & \vdots\\ dx_{m1} & dx_{m2} & \cdots & dx_{mn}\\ \end{bmatrix}. $$ |
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· .NET10 - 预览版1新功能体验(一)
2018-01-19 【293】博客园自动添加样式代码
2013-01-19 【099】论文摘要书写要求【转】