【POJ 1050】To the Max
To the Max
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 43725 | Accepted: 23166 |
Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
Input
The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Sample Input
4 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2
Sample Output
15
Source
题意:求子矩阵的最大和。
极度朴素的算法是O(N6),加上预处理出和能达到O(N4),但是这都不能达到要求。
我们在O(N4)的算法上加优化,可以少掉一层循环。
我们先来看一下这道题的线性版本。
给出一个序列,求其中一段连续子序列的最大和。
很明显我们可以预处理出前 i 个元素的和。然后 j ~ i 这段元素的和就是 sum[i] - sum[j - 1],现在我们要找这个值的最大值,我们看到在 i 不变的时候,
如果我们想让这个值最大,那sum[j - 1]必定是 1 ~ i - 1最小的。
这道题只是把它扩充成二维的版本。
加上一点东西,把这个矩阵压缩成一条线就行了。
#include<cstdio> #include<cstring> #include<algorithm> using namespace std; const int MAXN = 105; const int INF = 0x7fffffff; int best; int rowsum[MAXN][MAXN]; int sum[MAXN]; int n; int ans; int main() { scanf("%d", &n); memset(rowsum, 0, sizeof(rowsum)); for (int i = 1; i <= n; ++i) { for (int j = 1; j <= n; ++j) { scanf("%d", &rowsum[i][j]); rowsum[i][j] += rowsum[i][j - 1]; } } ans = -INF; sum[0] = 0; for (int i = 1; i <= n; ++i) for (int j = i; j <= n; ++j) { best = 0; for (int k = 1; k <= n; ++k) { sum[k] = rowsum[k][j] - rowsum[k][i - 1] + sum[k - 1]; /* 压缩 */ ans = max(ans, sum[k] - sum[best]); if (sum[best] > sum[k]) best = k; } } printf("%d\n", ans); return 0; }