逆元模板
一、费马小定理,快速幂(需mod为质数)
LL pow_mod(LL a, LL b, LL p){//a的b次方求余p LL ret = 1; while(b){ if(b & 1) ret = (ret * a) % p; a = (a * a) % p; b >>= 1; } return ret; } LL Fermat(LL a, LL p){//费马求a关于b的逆元 return pow_mod(a, p-2, p); }
二、扩展欧几里得算法
LL exgccd(LL a,LL b,LL &x,LL &y) { if(b==0) { x=1; y=0; return a; } LL g,t; g = exgccd(b,a%b,x,y);//递归,先进去,然后再出来,所以X的最终值不是1.。。会在下面三行发生改变 t = x; x = y; y = t-a/b*y; return g;//顺手求公约数; } LL inv(LL b,LL p) { LL x,y; exgccd(b,p,x,y); return x = (x%p+p)%p; }
三、
非原创
当p是个质数的时候有
inv(a) = (p - p / a) * inv(p % a) % p
证明:
设x = p % a,y = p / a
于是有 x + y * a = p
(x + y * a) % p = 0
移项得 x % p = (-y) * a % p
x * inv(a) % p = (-y) % p
inv(a) = (p - y) * inv(x) % p
于是 inv(a) = (p - p / a) * inv(p % a) % p
然后一直递归到1为止,因为1的逆元就是1
#include<cstdio> typedef long long LL; LL inv(LL t, LL p) {//求t关于p的逆元,注意:t要小于p,最好传参前先把t%p一下 return t == 1 ? 1 : (p - p / t) * inv(p % t, p) % p; } int main(){ LL a, p; while(~scanf("%lld%lld", &a, &p)){ printf("%lld\n", inv(a%p, p)); } }
这个方法不限于求单个逆元,比前两个好,它可以在O(n)的复杂度内算出n个数的逆元
递归就是上面的写法,加一个记忆性递归,就可以了
#include<cstdio> const int N = 200000 + 5; const int MOD = (int)1e9 + 7; int inv[N]; int init(){ inv[1] = 1; for(int i = 2; i < N; i ++){ inv[i] = (MOD - MOD / i) * 1ll * inv[MOD % i] % MOD; } } int main(){ init(); }