HDU 4135 Co-prime (容斥原理、分解质因数)
Co-prime
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 6224 Accepted Submission(s): 2506
Problem Description
Given a number N, you are asked to count the number of integers between A and B inclusive which are relatively prime to N.
Two integers are said to be co-prime or relatively prime if they have no common positive divisors other than 1 or, equivalently, if their greatest common divisor is 1. The number 1 is relatively prime to every integer.
Two integers are said to be co-prime or relatively prime if they have no common positive divisors other than 1 or, equivalently, if their greatest common divisor is 1. The number 1 is relatively prime to every integer.
Input
The first line on input contains T (0 < T <= 100) the number of test cases, each of the next T lines contains three integers A, B, N where (1 <= A <= B <= 1015) and (1 <=N <= 109).
Output
For each test case, print the number of integers between A and B inclusive which are relatively prime to N. Follow the output format below.
Sample Input
2
1 10 2
3 15 5
Sample Output
Case #1: 5
Case #2: 10
Hint
In the first test case, the five integers in range [1,10] which are relatively prime to 2 are {1,3,5,7,9}.题意:求区间[a,b]内与n互质的的数的数量
第一步: 求n的质因子
第二步:通过求与n不互质的数的数量,得到与n互质的数的数量;
例:
m=12,n=30.
第一步:求出n的质因子:2,3,5;
第二步:[1,m]中是n的质因子的倍数的数就不互质(2,4,6,8,10,12)->m/2 6个 (3,6,9,12)->m/3 4个, (5,10)->m/5 2个。
答案显然不是全加起来。利用容斥原理去重 公式:m/2+m/3+m/5-m/(2*3)-m/(2*5)-m/(3*5)+m/(2*3*5)。除数是奇数的时候加,是偶数的时候减。
#include <iostream> #include <vector> #include <cstdio> using namespace std; vector<int>Q; void init(int n)//求质因子; { Q.clear(); for(int i=2; i*i<n; i++)//这里是i*i<n,不是i<n; { if(n%i==0) { Q.push_back(i); while(n%i==0) n/=i; } } if(n>1) Q.push_back(n); } long long fun(long long a) { long long ans=0,val,cnt; for(int i=1; i<(1<<Q.size()); i++)//用二进制来1,0来表示第几个素因子是否被用到,如m=3,三个因子是2,3,5,则i=3时二进制是011,表示第2、3个因子被用到 { val=1; cnt=0; for(int j=0; j<Q.size(); j++) { if(i&(1<<j))//判断第几个因子目前被用到 { val*=Q[j]; cnt++; } } if(cnt&1)//容斥原理,奇加偶减 ans+=a/val; else ans-=a/val; } return a-ans; } int main() { int t,cas=0; long long a,b,n; cin>>t; while(t--) { cin>>a>>b>>n; init(n); long long ans=fun(b)-fun(a-1); cout<<"Case #"<<++cas<<": "<<ans<<endl; } return 0; }