洛谷P4009骑车加油行驶问题(分层图、最小费用最大流)
洛谷P4009骑车加油行驶问题
建一个\(k+1\)层的图,第0层为到加油站,第\(i\) \((1\leq i \leq k)\)层为走了\(i\)步,每个点向下一层中与它四联通的点建流量为1花费为0的边。需要注意它只要经过加油站就必须要加油,所以在1到k层中,加油站的点只能向第0层建边,不可向下一层建边
#include <bits/stdc++.h>
using namespace std;
const int maxn = 300100;
const int maxm = 3000100;
const int inf = 0x3f3f3f3f;
typedef long long ll;
struct edge {
int to, next, cap, flow, cost;
} e[maxm];
int head[maxn], tot;
int pre[maxn], dis[maxn];
bool vis[maxn];
int N;
void init(int n) {
N = n;
tot = 1;
memset(head, 0, sizeof(head));
}
void addedge(int u, int v, int cap, int cost) {
e[++tot].to = v, e[tot].next = head[u], e[tot].cap = cap, e[tot].cost = cost, e[tot].flow = 0, head[u] = tot;
e[++tot].to = u, e[tot].next = head[v], e[tot].cap = 0, e[tot].flow = 0, e[tot].cost = -cost, head[v] = tot;
}
bool spfa(int s, int t) {
deque<int> q;
for (int i = 0; i <= N; ++i) {
dis[i] = inf;
vis[i] = false;
pre[i] = -1;
}
dis[s] = 0;
vis[s] = true;
q.push_front(s);
while (!q.empty()) {
int u = q.front();
q.pop_front();
vis[u] = 0;
for (int i = head[u]; i; i = e[i].next) {
int v = e[i].to;
if (e[i].cap > e[i].flow && dis[v] > dis[u] + e[i].cost) {
dis[v] = dis[u] + e[i].cost;
pre[v] = i;
if (!vis[v]) {
vis[v] = true;
if (!q.empty()) {
if (dis[v] < dis[q.front()]) q.push_front(v);
else q.push_back(v);
} else q.push_back(v);
}
}
}
}
return pre[t] != -1;
}
//return 最大流,cost为最小费用
int mcfc(int s, int t, ll &cost) {
cost = 0;
int flow = 0;
while (spfa(s, t)) {
int minn = inf;
for (int i = pre[t]; i != -1; i = pre[e[i ^ 1].to]) {
if (minn > e[i].cap - e[i].flow) {
minn = e[i].cap - e[i].flow;
}
}
for (int i = pre[t]; i != -1; i = pre[e[i ^ 1].to]) {
e[i].flow += minn;
e[i ^ 1].flow -= minn;
cost += 1ll * e[i].cost * minn;
}
flow += minn;
}
return flow;
}
int mp[200][200];
int n;
inline int getid(int deep, int i, int j) {
return deep * n * n + (i - 1) * n + j;
}
int main() {
// freopen("in.txt", "r", stdin);
int k, A, B, C;
scanf("%d %d %d %d %d", &n, &k, &A, &B, &C);
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
scanf("%d", &mp[i][j]);
}
}
int s = 0, t = getid(k + 1, 1, 1);
init(t + 1);
addedge(s, getid(0, 1, 1), 1, 0);
for (int deep = 0; deep <= k; deep++) {
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
if (mp[i][j] && deep) {
addedge(getid(deep, i, j), getid(0, i, j), 1, A);
continue;
}
if (deep < k) {
if (j + 1 <= n)
addedge(getid(deep, i, j), getid(deep + 1, i, j + 1), 1, 0);
if (i + 1 <= n)
addedge(getid(deep, i, j), getid(deep + 1, i + 1, j), 1, 0);
if (j - 1 >= 1)
addedge(getid(deep, i, j), getid(deep + 1, i, j - 1), 1, B);
if (i - 1 >= 1)
addedge(getid(deep, i, j), getid(deep + 1, i - 1, j), 1, B);
}
int cost;
if (deep == 0) continue;
if (mp[i][j])cost = A;
else cost = C + A;
addedge(getid(deep, i, j), getid(0, i, j), 1, cost);
}
}
addedge(getid(deep, n, n), t, 1, 0);
}
ll ans = 0;
mcfc(s, t, ans);
printf("%lld\n", ans);
return 0;
}