使用FFT优化卷积运算
#include<iostream> #include<cstdio> #include<cmath> using namespace std; const int MAXN = 4 * 1e6 + 10; inline int read() { char c = getchar(); int x = 0, f = 1; while (c < '0' || c > '9') {if (c == '-')f = -1; c = getchar();} while (c >= '0' && c <= '9') {x = x * 10 + c - '0'; c = getchar();} return x * f; } const double Pi = acos(-1.0); struct complex { double x, y; complex (double xx = 0, double yy = 0) {x = xx, y = yy;} } a[MAXN], b[MAXN]; complex operator + (complex a, complex b) { return complex(a.x + b.x , a.y + b.y);} complex operator - (complex a, complex b) { return complex(a.x - b.x , a.y - b.y);} complex operator * (complex a, complex b) { return complex(a.x * b.x - a.y * b.y , a.x * b.y + a.y * b.x);} //不懂的看复数的运算那部分 void fast_fast_tle(int limit, complex *a, int type) { if (limit == 1) return ; //只有一个常数项 complex a1[limit >> 1], a2[limit >> 1]; for (int i = 0; i <= limit; i += 2) //根据下标的奇偶性分类 a1[i >> 1] = a[i], a2[i >> 1] = a[i + 1]; fast_fast_tle(limit >> 1, a1, type); fast_fast_tle(limit >> 1, a2, type); complex Wn = complex(cos(2.0 * Pi / limit) , type * sin(2.0 * Pi / limit)), w = complex(1, 0); //Wn为单位根,w表示幂 for (int i = 0; i < (limit >> 1); i++, w = w * Wn) //这里的w相当于公式中的k a[i] = a1[i] + w * a2[i], a[i + (limit >> 1)] = a1[i] - w * a2[i]; //利用单位根的性质,O(1)得到另一部分 } int main() { int N = read(), M = read(); for (int i = 0; i <= N; i++) a[i].x = read(); for (int i = 0; i <= M; i++) b[i].x = read(); int limit = 1; while (limit <= N + M) limit <<= 1; fast_fast_tle(limit, a, 1); fast_fast_tle(limit, b, 1); for (int i = 0; i <= limit; i++) a[i] = a[i] * b[i]; fast_fast_tle(limit, a, -1); for (int i = 0; i <= N + M; i++) printf("%d ", (int)(a[i].x / limit + 0.5)); return 0; }