python Scrapy -4 Item Pipeline
Item Pipeline
当Item在Spider中被收集之后,它将会被传递到Item Pipeline,这些Item Pipeline组件按定义的顺序处理Item。
每个Item Pipeline都是实现了简单方法的Python类,比如决定此Item是丢弃而存储。以下是item pipeline的一些典型应用:
- 验证爬取的数据(检查item包含某些字段,比如说name字段)
- 查重(并丢弃)
- 将爬取结果保存到文件或者数据库中
编写item pipeline
编写item pipeline很简单,item pipiline组件是一个独立的Python类,其中process_item()方法必须实现:
import something
class SomethingPipeline(object):
def __init__(self):
# 可选实现,做参数初始化等
# doing something
def process_item(self, item, spider):
# item (Item 对象) – 被爬取的item
# spider (Spider 对象) – 爬取该item的spider
# 这个方法必须实现,每个item pipeline组件都需要调用该方法,
# 这个方法必须返回一个 Item 对象,被丢弃的item将不会被之后的pipeline组件所处理。
return item
def open_spider(self, spider):
# spider (Spider 对象) – 被开启的spider
# 可选实现,当spider被开启时,这个方法被调用。
def close_spider(self, spider):
# spider (Spider 对象) – 被关闭的spider
# 可选实现,当spider被关闭时,这个方法被调用
完善之前的案例:
item写入JSON文件
以下pipeline将所有(从所有'spider'中)爬取到的item,存储到一个独立地items.json 文件,每行包含一个序列化为'JSON'格式的'item':
import json
class ItcastJsonPipeline(object):
def __init__(self):
self.file = open('teacher.json', 'wb')
def process_item(self, item, spider):
content = json.dumps(dict(item), ensure_ascii=False) + "\n"
self.file.write(content)
return item
def close_spider(self, spider):
self.file.close()
启用一个Item Pipeline组件
为了启用Item Pipeline组件,必须将它的类添加到 settings.py文件ITEM_PIPELINES 配置,就像下面这个例子:
# Configure item pipelines
# See http://scrapy.readthedocs.org/en/latest/topics/item-pipeline.html
ITEM_PIPELINES = {
#'mySpider.pipelines.SomePipeline': 300,
"mySpider.pipelines.ItcastJsonPipeline":300
}
分配给每个类的整型值,确定了他们运行的顺序,item按数字从低到高的顺序,通过pipeline,通常将这些数字定义在0-1000范围内(0-1000随意设置,数值越低,组件的优先级越高)
重新启动爬虫
将parse()方法改为4.2中最后思考中的代码,然后执行下面的命令:
scrapy crawl itcast
查看当前目录是否生成teacher.json