题目大意:有k个大小不同的数字ai,每种各有bi个,求从这些数中选出和为n的排列数

  来源:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=114429#problem/G(密码:ustbschool)

  此题是大白P62页的变形,将递推式改一下就ok了

   dp[i+1][j] = ∑dp[i][j-m*a[i]]  (m<=b[i]&&m*a[i]<=j)

    注意dp初始条件 dp[0][0]=1;

    

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <string>
#include <vector>
#include <deque>
#include <list>
#include <set>
#include <map>
#include <stack>
#include <queue>
#include <numeric>
#include <iomanip>
#include <bitset>
#include <sstream>
#include <fstream>
using namespace std;
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define in(n) scanf("%d",&(n))
#define in2(x1,x2) scanf("%d%d",&(x1),&(x2))
#define inll(n) scanf("%I64d",&(n))
#define inll2(x1,x2) scanf("%I64d%I64d",&(x1),&(x2))
#define inlld(n) scanf("%lld",&(n))
#define inlld2(x1,x2) scanf("%lld%lld",&(x1),&(x2))
#define inf(n) scanf("%f",&(n))
#define inf2(x1,x2) scanf("%f%f",&(x1),&(x2))
#define inlf(n) scanf("%lf",&(n))
#define inlf2(x1,x2) scanf("%lf%lf",&(x1),&(x2))
#define inc(str) scanf("%c",&(str))
#define ins(str) scanf("%s",(str))
#define out(x) printf("%d\n",(x))
#define out2(x1,x2) printf("%d %d\n",(x1),(x2))
#define outf(x) printf("%f\n",(x))
#define outlf(x) printf("%lf\n",(x))
#define outlf2(x1,x2) printf("%lf %lf\n",(x1),(x2));
#define outll(x) printf("%I64d\n",(x))
#define outlld(x) printf("%lld\n",(x))
#define outc(str) printf("%c\n",(str))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
#define mem(X,Y) memset(X,Y,sizeof(X));
typedef vector<int> vec;
typedef long long ll;
typedef pair<int,int> P;
const int dx[4]={1,0,-1,0},dy[4]={0,1,0,-1};
const int INF=0x3f3f3f3f;
const ll mod=1e9+7;
ll powmod(ll a,ll b) {ll res=1;a%=mod;for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}
const bool AC=true;

int dp[10][50];
int a[10],b[10];
int main(){
    int t,n,k;
    in(t);
    while(t--){
        mem(dp,0);
        in2(n,k);
        rep(i,0,k)
            in2(a[i],b[i]);
        dp[0][0]=1;
        rep(i,0,k)
            rep(j,0,n+1){
                for(int m=0;m<=b[i]&&m*a[i]<=j;m++){
                    dp[i+1][j]+=dp[i][j-m*a[i]];
                }
            }
           out(dp[k][n]);         
    }
    return 0;
}