题目大意:有k个大小不同的数字ai,每种各有bi个,求从这些数中选出和为n的排列数
来源:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=114429#problem/G(密码:ustbschool)
此题是大白P62页的变形,将递推式改一下就ok了
dp[i+1][j] = ∑dp[i][j-m*a[i]] (m<=b[i]&&m*a[i]<=j)
注意dp初始条件 dp[0][0]=1;
#include <cstdio> #include <cstdlib> #include <cstring> #include <cmath> #include <ctime> #include <iostream> #include <algorithm> #include <string> #include <vector> #include <deque> #include <list> #include <set> #include <map> #include <stack> #include <queue> #include <numeric> #include <iomanip> #include <bitset> #include <sstream> #include <fstream> using namespace std; #define rep(i,a,n) for (int i=a;i<n;i++) #define per(i,a,n) for (int i=n-1;i>=a;i--) #define in(n) scanf("%d",&(n)) #define in2(x1,x2) scanf("%d%d",&(x1),&(x2)) #define inll(n) scanf("%I64d",&(n)) #define inll2(x1,x2) scanf("%I64d%I64d",&(x1),&(x2)) #define inlld(n) scanf("%lld",&(n)) #define inlld2(x1,x2) scanf("%lld%lld",&(x1),&(x2)) #define inf(n) scanf("%f",&(n)) #define inf2(x1,x2) scanf("%f%f",&(x1),&(x2)) #define inlf(n) scanf("%lf",&(n)) #define inlf2(x1,x2) scanf("%lf%lf",&(x1),&(x2)) #define inc(str) scanf("%c",&(str)) #define ins(str) scanf("%s",(str)) #define out(x) printf("%d\n",(x)) #define out2(x1,x2) printf("%d %d\n",(x1),(x2)) #define outf(x) printf("%f\n",(x)) #define outlf(x) printf("%lf\n",(x)) #define outlf2(x1,x2) printf("%lf %lf\n",(x1),(x2)); #define outll(x) printf("%I64d\n",(x)) #define outlld(x) printf("%lld\n",(x)) #define outc(str) printf("%c\n",(str)) #define pb push_back #define mp make_pair #define fi first #define se second #define SZ(x) ((int)(x).size()) #define mem(X,Y) memset(X,Y,sizeof(X)); typedef vector<int> vec; typedef long long ll; typedef pair<int,int> P; const int dx[4]={1,0,-1,0},dy[4]={0,1,0,-1}; const int INF=0x3f3f3f3f; const ll mod=1e9+7; ll powmod(ll a,ll b) {ll res=1;a%=mod;for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;} const bool AC=true; int dp[10][50]; int a[10],b[10]; int main(){ int t,n,k; in(t); while(t--){ mem(dp,0); in2(n,k); rep(i,0,k) in2(a[i],b[i]); dp[0][0]=1; rep(i,0,k) rep(j,0,n+1){ for(int m=0;m<=b[i]&&m*a[i]<=j;m++){ dp[i+1][j]+=dp[i][j-m*a[i]]; } } out(dp[k][n]); } return 0; }