力[ZJOI2014]

【题目描述】

给出 \(n\) 个数 \(q_1,q_2, \dots q_n\),定义

\(F_j~=~\sum\limits_{i = 1}^{j - 1} \frac{q_i \times q_j}{(i - j)^2}~-~\sum\limits_{i = j + 1}^{n} \frac{q_i \times q_j}{(i - j)^2}\)

\(E_i~=~\frac{F_i}{q_i}\)

\(1 \leq i \leq n\),求 \(E_i\) 的值。

【输入格式】

第一行输入一个整数 \(n\)

以下 \(n\) 行,每行有一个实数。第 \(i+1\) 行的数代表 \(q_i\)

【输出格式】

输出 \(n\) 行每行一个实数,第 \(i\) 行的数字代表 \(E_i\)

当你的输出与标准答案相差不超过 \(10^{-2}\) 即为正确。

题解

\(E_i=\frac{F_i}{q_i}\) 上下都有\(q_i\) 直接扔掉即可

\(E_i=\sum\limits_{j = 1}^{i - 1} \frac{q_j}{(i - j)^2}~-~\sum\limits_{j = i + 1}^{n} \frac{q_j}{(i - j)^2}\)

\(E_i=\sum\limits_{j = 1}^{i} \frac{q_j}{(i - j)^2}~-~\sum\limits_{j = i}^{n} \frac{q_j}{(i - j)^2}\)

\(f[j]=q[j],~g[j]=\frac{1}{j^2}\),特殊地,\(f[0]=g[0]=0\)

\(E_i=\sum\limits_{j = 0}^{i} f[j]*g[i-j]~-~\sum\limits_{j = i}^{n} f[j]*g[j-i]\)

\(E_i=\sum\limits_{j = 0}^{i} f[j]*g[i-j]~-~\sum\limits_{j = 0}^{n-i} f[j+i]*g[j]\)

\(h[j]=f[n-j]\)

\(E_i=\sum\limits_{j = 0}^{i} f[j]*g[i-j]~-~\sum\limits_{j = 0}^{n-i} h[(n-i)-j]*g[j]\)

这样两个\(\sum\)都是卷积形式了 FFT乱搞即可

注意细节和精度。。。

代码

#include <bits/stdc++.h>
using namespace std;

const double pi = acos(-1.0);
int n, m, lim, l, rev[1000005];

struct comp {
    double x,y;
    comp(double xx = 0, double yy = 0): x(xx), y(yy) {}
} a[1000005], b[1000005], cc[1000005];

inline comp operator + (comp p, comp q) { return comp(p.x+q.x , p.y+q.y); }
inline comp operator - (comp p, comp q) { return comp(p.x-q.x , p.y-q.y); }
inline comp operator * (comp p, comp q) { return comp(p.x*q.x-p.y*q.y , p.x*q.y+p.y*q.x); }

void FFT(comp *c, int tp) {
	for (int i = 0; i < lim; i++) {
		if (i < rev[i]) swap(c[i], c[rev[i]]);
	}
	for (int mid = 1; mid < lim; mid <<= 1) {
		comp wn = comp(cos(pi / mid), sin(pi / mid) * tp);
		for (int r = mid<<1, j = 0; j < lim; j += r) {
			comp w = comp(1, 0);
			for (int k = 0; k < mid; k++, w = w * wn) {
				comp x = c[j+k], y = w * c[j+k+mid];
				c[j+k] = x + y;
				c[j+k+mid] = x - y;
			}
		}
	}
}

int main() {
	scanf("%d", &n);
	for (int i = 1; i <= n; i++) {
		scanf("%lf", &a[i].x);
		cc[n-i].x = a[i].x;
		b[i].x = (double)(1.0 / i / i);
	} 
	lim = 1;
	while (lim <= n + n) {
		lim <<= 1;
		l++;
	} 
	for (int i = 0; i < lim; i++) {
		rev[i] = (rev[i>>1]>>1)|((i&1)<<(l-1));
	}
	FFT(a, 1); FFT(b, 1); FFT(cc, 1);
	for (int i = 0; i < lim; i++) {
		a[i] = a[i] * b[i];
		cc[i] = cc[i] * b[i];
	}
	FFT(a, -1); FFT(cc, -1);
	for (int i = 0; i < lim; i++) {
		a[i].x /= lim; cc[i].x /= lim;
	}
	for (int i = 1; i <= n; i++) {
		printf("%.3lf\n", a[i].x - cc[n-i].x);	
	}
	return 0;
} 
posted @ 2020-04-26 18:44  AK_DREAM  阅读(102)  评论(0编辑  收藏  举报