迭代次数问题(BP)

F:\develop\pythonidle\lib\site-packages\sklearn\neural_network\_multilayer_perceptron.py:690: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (300) reached and the optimization hasn't converged yet. warnings.warn( F:\develop\pythonidle\lib\site-packages\sklearn\neural_network\_multilayer_perceptron.py:690: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (300) reached and the optimization hasn't converged yet. warnings.warn( F:\develop\pythonidle\lib\site-packages\sklearn\neural_network\_multilayer_perceptron.py:690: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (300) reached and the optimization hasn't converged yet. warnings.warn( F:\develop\pythonidle\lib\site-packages\sklearn\neural_network\_multilayer_perceptron.py:690: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (300) reached and the optimization hasn't converged yet. warnings.warn( F:\develop\pythonidle\lib\site-packages\sklearn\neural_network\_multilayer_perceptron.py:690: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (300) reached and the optimization hasn't converged yet. warnings.warn(

 

您遇到的警告信息表明,在训练BP神经网络时,优化器在达到最大迭代次数(300次)之前没有收敛。这意味着模型可能还没有找到最佳的权重和偏置参数,因此性能可能不是最优的。

 增加最大迭代次数

增加`max_iter`参数的值可以给优化器更多的迭代机会来找到更好的解。例如,将其增加到1000次迭代:

 
mlp = MLPClassifier(hidden_layer_sizes=(10,), activation='relu', solver='adam', random_state=42, max_iter=1000)

这里我的1000次还不够最后加到5000就不报错了

 

posted @   艾鑫4646  阅读(27)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 分享4款.NET开源、免费、实用的商城系统
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· 记一次.NET内存居高不下排查解决与启示
点击右上角即可分享
微信分享提示