1033. To Fill or Not to Fill (25) -贪心算法
题目如下:
With highways available, driving a car from Hangzhou to any other city is easy. But since the tank capacity of a car is limited, we have to find gas stations on the way from time to time. Different gas station may give different price. You are asked to carefully design the cheapest route to go.
Input Specification:
Each input file contains one test case. For each case, the first line contains 4 positive numbers: Cmax (<= 100), the maximum capacity of the tank; D (<=30000), the distance between Hangzhou and the destination city; Davg (<=20), the average distance per unit gas that the car can run; and N (<= 500), the total number of gas stations. Then N lines follow, each contains a pair of non-negative numbers: Pi, the unit gas price, and Di (<=D), the distance between this station and Hangzhou, for i=1,...N. All the numbers in a line are separated by a space.
Output Specification:
For each test case, print the cheapest price in a line, accurate up to 2 decimal places. It is assumed that the tank is empty at the beginning. If it is impossible to reach the destination, print "The maximum travel distance = X" where X is the maximum possible distance the car can run, accurate up to 2 decimal places.
Sample Input 1:50 1300 12 8 6.00 1250 7.00 600 7.00 150 7.10 0 7.20 200 7.50 400 7.30 1000 6.85 300Sample Output 1:
749.17Sample Input 2:
50 1300 12 2 7.10 0 7.00 600Sample Output 2:
The maximum travel distance = 1200.00
这是一道考察贪心算法的题目,为了达到花最少的钱到达终点或是跑最远距离的目的,我们很难整体的去把握这个问题,通过贪心算法,可以把整体问题化为局部问题,只站在当前的角度分析最贪婪(最优)的抉择,从而得到问题的最优解,贪心问题的困难之处在于对问题的分析和情况分类,一旦情况考虑的不够周全,就可能满盘皆输。
对于这道题目,我们分如下的情况进行讨论。
对于当前站点S,所能到达的最大范围即满油量所能到达的距离,设满油量能前进的距离为maxToGo,则在S到S+maxToGo范围内,分如下情况进行考虑:
Ⅰ此范围内有加油站
①有比当前站点便宜的加油站,因为只从最小的局部考虑问题,如果有多个比当前便宜的,到达那个最近的而不是最便宜的(只需要在找到第一个比S便宜的站点时break即可)。
②全部比S更贵(易错点)
2.1 如果从S无法到达终点,则选择最便宜的那个,从S加满油到达那个站点。
2.2 如果从S可以直接到达终点,则从S加油至能到达终点,直接开到终点。
Ⅱ此范围内无加油站
①如果从S可以直接到达终点,则加到能到达终点,直接到达。
②如果从S无法到达终点,加满油,能跑多远跑多远。
具体实现为用结构体存储站点信息,压入vector按照升序排序,从前到后处理各个站点,用cur表示当前所在的站点,当cur为最后一个站点之后的范围时,结束循环,具体代码如下:
#include <iostream> #include <vector> #include <stdio.h> #include <iomanip> #include <algorithm> using namespace std; #define INF 99999999 struct GasStation{ double price; double dis; GasStation(double _p, double _d) : price(_p), dis(_d) {} }; int compare(GasStation a, GasStation b){ return a.dis < b.dis; } int main() { int cons,gasCnt; double cap; double dis; double price; double dist; vector<GasStation> stations; cin >> cap >> dis >> cons >> gasCnt; double maxToGo = cap * cons; for(int i = 0; i < gasCnt; i++){ scanf("%lf %lf",&price,&dist); stations.push_back(GasStation(price,dist)); } sort(stations.begin(),stations.end(),compare); if(stations[0].dis > 0){ printf("The maximum travel distance = 0.00\n"); return 0; } int cur = 0; double now_cap = 0; double sumPrice = 0; int curEnd = stations.size(); double stationPrice = 0; double stationDis = 0; int hasStation = 0; int dest = 0; // 如果有多个起点加油站,选择那个最便宜的加油。 // 事实证明题目中并没有此类不符合实际的陷阱。 int minPrice = stations[0].price; for(int i = 0; i < stations.size(); i++){ if(stations[i].dis == 0){ if(minPrice > stations[i].price){ cur = i; } }else break; } while(cur < curEnd){ stationPrice = stations[cur].price; stationDis = stations[cur].dis; dest = -1; hasStation = 0; for(int i = cur + 1; i < stations.size(); i++){ // 首先判断当前站点之后有没有可以到达的 if((stations[i].dis - stationDis) <= maxToGo){ // 发现有可到达的站点,再找出最近且最便宜的。 hasStation = 1; // 找出最便宜的有两种情况,第一是有比当前站点便宜的,到达最近的满足条件的这样的站点。 // 或者都比当前站点贵,则加油到能到达最便宜的那个。 // 这两个判断是冲突的,因为有比当期便宜的时候选择的不是那个最便宜的而是最近的,都贵的时候找的是最便宜的 // 因此先判断有没有比当前便宜的,没有再进一步找那个贵中最便宜的。 if(stationPrice > stations[i].price){ // 找到了更便宜的,在这里中断查找,保证找到的是最近的。 dest = i; break; } }else{ // 都没有可到达的站点了。 break; } } if(hasStation != 1){ // 没有可到达站点 if((dis - stationDis) <= maxToGo){ // 能跑到终点,则加油到可以跑到终点 double need = dis - stationDis; if(now_cap * cons >= need){ // 油足够到达 break; }else{ // 油不够,加到能跑到终点 double last = (need - now_cap * cons); sumPrice += (last / cons) * stationPrice; break; } }else{ // 跑不到终点,能跑多远跑多远 double sumDis = stationDis + cap * cons; printf("The maximum travel distance = %.2lf\n",sumDis); return 0; } }else{ // 有可以到达的站点 if(dest != -1){ // 找到了比当前便宜且距离当前最近的加油站,加油到跑到那里,然后继续在那个站点考虑 double need = stations[dest].dis - stationDis; if(need <= now_cap * cons){ // 油足够到达 now_cap -= need / cons; }else{ // 油不够,补齐 sumPrice += (need - now_cap * cons) / cons * stationPrice; now_cap = 0; // 跑过去就没有油了 } cur = dest; }else{ // 没有便宜的,选择那个最便宜的加油跑过去。 // !!!先看能否到终点,能到就直接到终点,一定注意这种情况!!! if((dis - stationDis) <= maxToGo){ double need = dis - stationDis; if(now_cap * cons < need){ sumPrice += (need - now_cap * cons) / cons * stationPrice; } break; } int minPrice = INF; int minCur = -1; for(int i = cur + 1; i < stations.size(); i++){ if((stations[i].dis - stationDis) < maxToGo){ if(stations[i].price < minPrice){ minPrice = stations[i].price; minCur = i; } }else{ break; } } cur = minCur; sumPrice += (cap - now_cap) * stationPrice; now_cap = cap - (stations[cur].dis - stationDis) / cons; } } } printf("%.2lf\n",sumPrice); return 0; }