LeetCode 72. Edit Distance
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)
You have the following 3 operations permitted on a word:
a) Insert a character
b) Delete a character
c) Replace a character
题目大意就是将字符串word1
变为word2
需要几步操作。
每一步操作都有三种情况 -- 插入,删除,转换。
- 建立
dp
数组 - 设
dp[i][j]
等于将word1[0,1,2...,i-1]
转化为word2[0,1,2...,j-1]
最少需要多少步操作 - 那么分为两种情况
- 插入和删除(如果字符串
word2
中有字符串word1
中没有的字符,那么对于这个字符,可以在字符串word1
中插入这个,也可以在字符串word2
中删除这个字符;所以插入和删除为一类情况)- 转化
- 这两步对应的情况分别为:
//如果word1[i] != wordw[j]
//对于第一步 dp[i][j] = max(dp[i-1][j], dp[i][j-1]) + 1;
//对于第二部 dp[i][j] = dp[i-1][j-1] + 1;
//所以将这两种结合,取较小值。
if(word1[i] != wordw[j])
dp[i][j] = min(dp[i-1][j-1], min(dp[i][j-1], dp[i-1][j])) + 1;
代码如下:
class Solution {
public:
int minDistance(string word1, string word2) {
int x = word1.size(), y = word2.size();
if(x == 0)
return y;
if(y == 0)
return x;
vector<vector<int>>dp(x+1, vector<int>(y+1, 0));
for(int i=0; i<x+1; ++ i)
dp[i][0] = i;
for(int i=0; i<y+1; ++ i)
dp[0][i] = i;
for(int i=1; i<x+1; ++ i)
{
for(int j=1; j<y+1; ++ j)
{
if(word1[i-1] == word2[j-1])
dp[i][j] = dp[i-1][j-1];
else
dp[i][j] = min(dp[i-1][j-1], min(dp[i-1][j], dp[i][j-1])) + 1;
}
}
return dp[x][y];
}
};