[整理]Matlab 之中心平滑滤波

滑动平均(moving average):在地球物理异常图上,选定某一尺寸的窗口,将窗口内的所有异常值做算术平均,将平均值作为窗口中心点的异常值。按点距或线距移动窗口,重复此平均方法,直到对整幅图完成上述过程,这种过程称为滑动平均。

滑动平均相当于低通滤波,在重力勘探和测井资料处理解释中常用此方法。

如果滑动窗长为 n 的话,滑动平均就是让数据通过一个 n 点的 FIR 滤波器,滤波器抽头系数都是 1,这样取滑动平均就是起到序列平滑的作用。

Matlab 中有多种滑动平均方法,比如 filter 和 tsmovavg 方法都可以实现。

普通滑动平均

基于filter的普通无权重滑动平均,有关于 filter 函数,可以 doc filter进行详细信息的查看,这里我们由于只使用了简单的滑动平均,在此记录一种简单的滑动平均方法。

seqOriginal = rand(1,100);
windowSize  = x;
seqFilter   = filter( ones(1, windowSize) / windowSize, 1, seqOriginal );

上述命令实际计算的是:

x表示seqOriginal, y表示seqFilter, a表示windowSize。
y(1) = (1 / a) * x(1);
y(2) = (1 / a) * x(2) + (1 / a) * x(1);
...
y(a) = (1 / a) * x(a) + (1 / a) * x(a - 1) + ... + (1 / a) * x(1);
...
y(i) = (1 / a) * x(i) + (1 / a) * x(i - 1) + ... + (1 / a) * x(i - a + 1);
...

注:该方法由于是计算该点和之前 windowSize 的点的平均值,故其输出结果相对于原数据趋势有一个滞后。如果数据量比较少,可能影响较大。

中心滑动平均

还有一种滑动平均的方法为中心滑动平均,数据点位于滑动窗的中心进行平均值的计算。则上述的计算变为(在此为了方便虚数,设a为奇数):

y(1) = (1 / a) * x(1) + (1 / a) * x(2) + ... + (1 / a) * x((a+1) / 2);
y(2) = (1 / a) * x(1) + (1 / a) * x(2) + ... + (1 / a) * x((a+1) / 2 + 1);
...
y((a + 1) / 2) = (1 / a) * x(1) + (1 / a) * x(2) + ... + (1 / a) * x((a+1) / 2) + (1 / a) * x(a);
...
y(i) = (1 / a) * x(i - (a - 1) / 2) + (1 / a) * x(i - (a - 1) / 2 + 1) + ... + (1 / a) * x(i) + ... + (1 / a) * x(i + (a+1) / 2);
...

将上述式子转换为 Matlab 语句为:

seqOriginal = rand(1,100);
windowSize  = x;
seq1        = filter( ones(1, windowSize / 2 + 1) / windowSize, 1, seqOriginal );
seq2        = filter( ones(1, windowSize / 2 + 1) / windowSize, 1, fliplr(seqOriginal) );
seqFilter   = seq1 + fliplr(seq2) - 1 / windowSize * seqOriginal;

为了方便使用,为其写了一个 function 函数用来调用。

%fun_CenterAverageFilter
%--
%   seqFilter = fun_CenterAverageFilter(seqOriginal, windowSize)
%   中心滑动平均
%--
%   seqFilter   |Matrix|    滤波后输出序列  
%   seqOriginal |Matrix|    原始序列
%   windowSize  |Double|    滑动窗口
%--
%Author:    Liu Tong
%History:
%----
%Rev:  1.0
%Date: 2016/12/22
%   create.
%--
function seqFilter = fun_CenterAverageFilter(seqOriginal, windowSize)
seq1        = filter( ones(1, windowSize / 2 + 1) / windowSize, 1, seqOriginal );
seq2        = filter( ones(1, windowSize / 2 + 1) / windowSize, 1, fliplr(seqOriginal) );
seqFilter   = seq1 + fliplr(seq2) - 1 / windowSize * seqOriginal;
end

posted on 2019-09-03 20:03  青鸟晴空  阅读(2812)  评论(0编辑  收藏  举报

导航