uva 11978 Fukushima Nuclear Blast (二分+多边形与圆交)

二分+多边形与圆交就可以了

  1 //#include<bits/stdc++.h>
  2 #include<iostream>
  3 #include<cstdio>
  4 #include<cmath>
  5 #include<cstring>
  6 #include<vector>
  7 #include<algorithm>
  8 using namespace std;
  9 typedef long long LL;
 10 
 11 const double PI = acos(-1.0);
 12 const double EPS = 1e-8;
 13 
 14 inline int sgn(double x) {
 15     return (x > EPS) - (x < -EPS);
 16 }
 17 
 18 struct Point {
 19     double x, y;
 20     Point() {}
 21     Point(double x, double y): x(x), y(y) {}
 22     void read() {
 23         scanf("%lf%lf", &x, &y);
 24     }
 25     double angle() {
 26         return atan2(y, x);
 27     }
 28     Point operator + (const Point &rhs) const {
 29         return Point(x + rhs.x, y + rhs.y);
 30     }
 31     Point operator - (const Point &rhs) const {
 32         return Point(x - rhs.x, y - rhs.y);
 33     }
 34     Point operator * (double t) const {
 35         return Point(x * t, y * t);
 36     }
 37     Point operator / (double t) const {
 38         return Point(x / t, y / t);
 39     }
 40     double operator *(const Point &b)const
 41     {
 42         return x*b.x + y*b.y;
 43     }
 44     double length() const {
 45         return sqrt(x * x + y * y);
 46     }
 47     Point unit() const {            //单位向量
 48         double l = length();
 49         return Point(x / l, y / l);
 50     }
 51 };
 52 double cross(const Point &a, const Point &b) {
 53     return a.x * b.y - a.y * b.x;
 54 }
 55 double sqr(double x) {
 56     return x * x;
 57 }
 58 double dist(const Point &p1, const Point &p2) {
 59     return (p1 - p2).length();
 60 }
 61 double sdist(Point a,Point b){
 62     return (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y);
 63 }
 64 //向量 op 逆时针旋转 angle
 65 Point rotate(const Point &p, double angle, const Point &o = Point(0, 0)) {
 66     Point t = p - o;
 67     double x = t.x * cos(angle) - t.y * sin(angle);
 68     double y = t.y * cos(angle) + t.x * sin(angle);
 69     return Point(x, y) + o;
 70 }
 71 Point line_inter(Point A,Point B,Point C,Point D){ //直线相交交点
 72         Point ans;
 73         double a1=A.y-B.y;
 74         double b1=B.x-A.x;
 75         double c1=A.x*B.y-B.x*A.y;
 76 
 77         double a2=C.y-D.y;
 78         double b2=D.x-C.x;
 79         double c2=C.x*D.y-D.x*C.y;
 80 
 81         ans.x=(b1*c2-b2*c1)/(a1*b2-a2*b1);
 82         ans.y=(a2*c1-a1*c2)/(a1*b2-a2*b1);
 83         return ans;
 84 }
 85 Point p_to_seg(Point p,Point a,Point b){        //点到线段的最近点
 86     Point tmp=p;
 87     tmp.x+=a.y-b.y;
 88     tmp.y+=b.x-a.x;
 89     if(cross(a-p,tmp-p)*cross(b-p,tmp-p)>0) return dist(p,a)<dist(p,b)?a:b;
 90     return line_inter(p,tmp,a,b);
 91 }
 92 void line_circle(Point c,double r,Point a,Point b,Point &p1,Point &p2){
 93     Point tmp=c;
 94     double t;
 95     tmp.x+=(a.y-b.y);//求垂直于ab的直线
 96     tmp.y+=(b.x-a.x);
 97     tmp=line_inter(tmp,c,a,b);
 98     t=sqrt(sqr(r)-sqr( dist(c,tmp)))/dist(a,b); //比例
 99     p1.x=tmp.x+(b.x-a.x)*t;
100     p1.y=tmp.y+(b.y-a.y)*t;
101     p2.x=tmp.x-(b.x-a.x)*t;
102     p2.y=tmp.y-(b.y-a.y)*t;
103 }
104 struct Region {
105     double st, ed;
106     Region() {}
107     Region(double st, double ed): st(st), ed(ed) {}
108     bool operator < (const Region &rhs) const {
109         if(sgn(st - rhs.st)) return st < rhs.st;
110         return ed < rhs.ed;
111     }
112 };
113 struct Circle {
114     Point c;
115     double r;
116     vector<Region> reg;
117     Circle() {}
118     Circle(Point c, double r): c(c), r(r) {}
119     void read() {
120         c.read();
121         scanf("%lf", &r);
122     }
123     void add(const Region &r) {
124         reg.push_back(r);
125     }
126     bool contain(const Circle &cir) const {
127         return sgn(dist(cir.c, c) + cir.r - r) <= 0;
128     }
129     bool intersect(const Circle &cir) const {
130         return sgn(dist(cir.c, c) - cir.r - r) < 0;
131     }
132 };
133 void intersection(const Circle &cir1, const Circle &cir2, Point &p1, Point &p2) {   //两圆相交 交点
134     double l = dist(cir1.c, cir2.c);                            //两圆心的距离
135     double d = (sqr(l) - sqr(cir2.r) + sqr(cir1.r)) / (2 * l);  //cir1圆心到交点直线的距离
136     double d2 = sqrt(sqr(cir1.r) - sqr(d));                     //交点到 两圆心所在直线的距离
137     Point mid = cir1.c + (cir2.c - cir1.c).unit() * d;
138     Point v = rotate(cir2.c - cir1.c, PI / 2).unit() * d2;
139     p1 = mid + v, p2 = mid - v;
140 }
141 Point calc(const Circle &cir, double angle) {
142     Point p = Point(cir.c.x + cir.r, cir.c.y);
143     return rotate(p, angle, cir.c);
144 }
145 const int MAXN = 1010;
146 Circle cir[MAXN],cir2[MAXN];
147 bool del[MAXN];
148 int n;
149 double get_area(Circle* cir,int n) {            //多个圆的相交面积
150     double ans = 0;
151     memset(del,0,sizeof(del));
152     for(int i = 0; i < n; ++i) {
153         for(int j = 0; j < n; ++j) if(!del[j]) {                //删除被包含的圆
154             if(i == j) continue;
155             if(cir[j].contain(cir[i])) {
156                 del[i] = true;
157                 break;
158             }
159         }
160     }
161     for(int i = 0; i < n; ++i) if(!del[i]) {
162         Circle &mc = cir[i];
163         Point p1, p2;
164         bool flag = false;
165         for(int j = 0; j < n; ++j) if(!del[j]) {
166             if(i == j) continue;
167             if(!mc.intersect(cir[j])) continue;
168             flag = true;
169             intersection(mc, cir[j], p1, p2);                   //求出两圆的交点
170             double rs = (p2 - mc.c).angle(), rt = (p1 - mc.c).angle();
171             if(sgn(rs) < 0) rs += 2 * PI;
172             if(sgn(rt) < 0) rt += 2 * PI;
173             if(sgn(rs - rt) > 0) mc.add(Region(rs, PI * 2)), mc.add(Region(0, rt)); //添加相交区域
174             else mc.add(Region(rs, rt));
175         }
176         if(!flag) {
177             ans += PI * sqr(mc.r);
178             continue;
179         }
180         sort(mc.reg.begin(), mc.reg.end());                 //对相交区域进行排序
181         int cnt = 1;
182         for(int j = 1; j < int(mc.reg.size()); ++j) {
183             if(sgn(mc.reg[cnt - 1].ed - mc.reg[j].st) >= 0) {   //如果有区域可以合并,则合并
184                 mc.reg[cnt - 1].ed = max(mc.reg[cnt - 1].ed, mc.reg[j].ed);
185             } else mc.reg[cnt++] = mc.reg[j];
186         }
187         mc.add(Region());
188         mc.reg[cnt] = mc.reg[0];
189         for(int j = 0; j < cnt; ++j) {
190             p1 = calc(mc, mc.reg[j].ed);
191             p2 = calc(mc, mc.reg[j + 1].st);
192             ans += cross(p1, p2) / 2;                           //
193             double angle = mc.reg[j + 1].st - mc.reg[j].ed;
194             if(sgn(angle) < 0) angle += 2 * PI;
195             ans += 0.5 * sqr(mc.r) * (angle - sin(angle));      //弧所对应的的面积
196         }
197     }
198     return ans;
199 }
200 double two_cir(Circle t1,Circle t2){            //两个圆的相交面积
201     if(t1.contain(t2)||t2.contain(t1))    return PI * sqr(min(t2.r,t1.r));
202     if(!t1.intersect(t2)) return 0;
203     double ans=0,len=dist(t1.c,t2.c);
204     double x=(sqr(t1.r)+sqr(len)-sqr(t2.r))/(2*len);
205     double angle1=acos(x/t1.r),angle2=acos((len-x)/t2.r);
206     ans=sqr(t1.r)*angle1+sqr(t2.r)*angle2-len*t1.r*sin(angle1);    // 两个扇形 减去一个四边形面积
207     return ans;
208 }
209 double triangle_circle(Point a,Point b,Point o,double r){
210     double sign=1.0;
211     double ans=0;
212     Point p1,p2;
213     a=a-o;b=b-o;
214     o=Point(0,0);
215     if(sgn(cross(a,b))==0) return 0.0;
216     if(sdist(a,o)>sdist(b,o)){
217         swap(a,b);
218         sign=-1.0;
219     }
220     if(sdist(a,o)<r*r+EPS){  //a 在内, b 在外
221         if(sdist(b,o)<r*r+EPS) return cross(a,b)/2.0*sign;
222         line_circle(o,r,a,b,p1,p2);
223         if(dist(p1,b)>dist(p2,b)) swap(p1,p2);
224         double ans1=fabs(cross(a,p1));
225         double ans2=acos(p1*b/p1.length()/b.length())*r*r;
226         ans=(ans1+ans2)/2.0;
227         if(cross(a,b)<EPS&&sign>0.0||cross(a,b)>EPS&&sign<0.0) return -ans;
228         return ans;
229     }
230     Point tmp=p_to_seg(o,a,b);
231     if(sdist(o,tmp)>r*r-EPS){    //a,b所在直线与圆没有交点
232         double angle=a*b/a.length()/b.length();
233         if(angle>1.0) angle=1;
234         if(angle<-1.0) angle=-1.0;
235         ans=acos(a*b/a.length()/b.length())*r*r/2.0;
236         if(cross(a,b)<EPS&&sign>0.0||cross(a,b)>EPS&&sign<0.0) return -ans;
237         return ans;
238     }
239     line_circle(o,r,a,b,p1,p2);
240     double cm=r/(dist(a,o)-r);
241     Point m=Point((o.x+cm*a.x)/(1+cm),(o.y+cm*a.y)/(1+cm) );
242     double cn=r/(dist(o,b)-r);
243     Point n=Point( (o.x+cn*b.x)/(1+cn) , (o.y+cn*b.y)/(1+cn) );
244     double angle= m*n/m.length()/n.length();
245     if(angle>1.0) angle=1;
246     if(angle<-1.0) angle=-1.0;
247     double ans1 = acos(m*n/m.length()/n.length())*r*r;
248     angle=p1*p2/p1.length()/p2.length() ;
249     if(angle>1.0) angle=1;
250     if(angle<-1.0) angle=-1.0;
251     double ans2 = acos(p1*p2/p1.length()/p2.length() )*r*r-fabs(cross(p1,p2));
252     ans=(ans1-ans2)/2.0;
253     if(cross(a,b)<EPS&&sign>0.0||cross(a,b)>EPS&&sign<0.0) return -ans;
254     return ans;
255 }
256 Point pt[5100];
257 int main() {
258     #ifndef ONLINE_JUDGE
259     freopen("input.txt","r",stdin);
260     #endif // ONLINE_JUDGE
261     Point a,b,c;
262     double x1,y1,h,x2,y2,r,p;
263     int t,cas=0;cin>>t;
264     while(t--){
265         int n;cin>>n;
266         for(int i=0;i<n;i++) pt[i].read();
267         c.read();
268         cin>>p;
269         pt[n]=pt[0];
270         double aLL=0,ans;
271         for(int i=0;i<n;i++) aLL+=cross(pt[i],pt[i+1])/2.0;
272         double l=0,r=1000000,mid;
273         while(r-l>1e-3){
274             mid=(l+r)/2;
275             double sum=0;
276             for(int i=0;i<n;i++) sum+=triangle_circle(pt[i],pt[i+1],c,mid);
277             sum=fabs(sum);
278             if(sum>=aLL*p/100) {
279                 ans=mid;
280                 r=mid;
281             }
282             else l=mid;
283         }
284         printf("Case %d: %.0f\n",++cas,ans);
285     }
286 }

 

posted on 2015-07-29 19:25  天凉了  阅读(390)  评论(0编辑  收藏  举报

导航