hdu 4324

Triangle LOVE

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 2478    Accepted Submission(s): 1011


Problem Description
Recently, scientists find that there is love between any of two people. For example, between A and B, if A don’t love B, then B must love A, vice versa. And there is no possibility that two people love each other, what a crazy world!
Now, scientists want to know whether or not there is a “Triangle Love” among N people. “Triangle Love” means that among any three people (A,B and C) , A loves B, B loves C and C loves A.
  Your problem is writing a program to read the relationship among N people firstly, and return whether or not there is a “Triangle Love”.
 
Input
The first line contains a single integer t (1 <= t <= 15), the number of test cases.
For each case, the first line contains one integer N (0 < N <= 2000).
In the next N lines contain the adjacency matrix A of the relationship (without spaces). Ai,j = 1 means i-th people loves j-th people, otherwise Ai,j = 0.
It is guaranteed that the given relationship is a tournament, that is, Ai,i= 0, Ai,j ≠ Aj,i(1<=i, j<=n,i≠j).
 
Output
For each case, output the case number as shown and then print “Yes”, if there is a “Triangle Love” among these N people, otherwise print “No”.
Take the sample output for more details.
 
Sample Input
2
5
00100
10000
01001
11101
11000
5
01111
00000
01000
01100
01110
 
Sample Output
Case #1: Yes
Case #2: No

 对于两个任何两个点都会有一条边将他们相连(Ai,j ≠ Aj,i

假设目前有一个环大于3,其中有相连的三个点A,B,C,即 A->B,B->C

如果C->A 有一条边,就形成了一个3环

如果C->A 没有边,那么一定有 A->C,从而形成一个n-1环,以这种方式一定可以形成一个3环

所以只要判断这些点构成一个环即可

 1 #include<string>
 2 #include<cstdio>
 3 #include<iostream>
 4 #include<vector>
 5 #include<queue>
 6 #include<stack>
 7 #include<algorithm>
 8 #include<cstring>
 9 #include<stdlib.h>
10 #include<string>
11 #include<cmath>
12 using namespace std;
13 #define pb push_back
14 vector<int >p[10010];
15 int in[10010],n,m,deep[10010],num[10010];
16 char dp[2010][2010];
17 void init(){
18     memset(in,0,sizeof(in));
19     memset(deep,0,sizeof(deep));
20     memset(num,0,sizeof(num));
21     for(int i=0;i<=n;i++) p[i].clear();
22 }
23 int tuopu(){
24     queue<int >ak_47;
25     int cnt=0;
26     for(int i=1;i<n;i++)
27     if(in[i]==0) ak_47.push(i),deep[i]=1,num[1]++;
28     while(!ak_47.empty()){
29         int pos=ak_47.front();
30         cnt++;
31         for(int i=0;i<p[pos].size();i++){
32             int to=p[pos][i];
33             if(--in[to]==0) ak_47.push(to),deep[to]=deep[pos]+1,num[deep[to] ]++;
34         }
35         ak_47.pop();
36     }
37     if(cnt<n) return 1;
38     else return 0;
39 
40 }
41 int main(){
42     int cas=0,t;
43     cin>>t;
44     while(t--){
45         cin>>n;
46         init();
47         for(int i=1;i<=n;i++){
48             scanf("%s",dp[i]);
49             for(int j=0;j<n;j++)
50             if(dp[i][j]=='1') in[j+1]++,p[i].pb(j+1);
51         }
52         if(tuopu()) printf("Case #%d: Yes\n",++cas);
53         else   printf("Case #%d: No\n",++cas);
54     }
55 }

 

 

posted on 2014-08-06 23:37  天凉了  阅读(141)  评论(0编辑  收藏  举报

导航