TensorFlow学习笔记之五——源码分析之最近算法
import numpy as np import tensorflow as tf # Import MINST data import input_data mnist = input_data.read_data_sets("/tmp/data/", one_hot=True) #这里主要是导入数据,数据通过input_data.py已经下载到/tmp/data/目录之下了,这里下载数据的时候,需要提前用浏览器尝试是否可以打开 #http://yann.lecun.com/exdb/mnist/,如果打不开,下载数据阶段会报错。而且一旦数据下载中断,需要将之前下载的未完成的数据清空,重新 #进行下载,否则会出现CRC Check错误。read_data_sets是input_data.py里面的一个函数,主要是将数据解压之后,放到对应的位置。 # In this example, we limit mnist data Xtr, Ytr = mnist.train.next_batch(5000) #5000 for training (nn candidates) Xte, Yte = mnist.test.next_batch(200) #200 for testing #mnist.train.next_batch,其中train和next_batch都是在input_data.py里定义好的数据项和函数。此处主要是取得一定数量的数据。 # Reshape images to 1D Xtr = np.reshape(Xtr, newshape=(-1, 28*28)) Xte = np.reshape(Xte, newshape=(-1, 28*28)) #将二维的图像数据一维化,利于后面的相加操作。 # tf Graph Input xtr = tf.placeholder("float", [None, 784]) xte = tf.placeholder("float", [784]) #设立两个空的类型,并没有给具体的数据。这也是为了基于这两个类型,去实现部分的graph。 # Nearest Neighbor calculation using L1 Distance # Calculate L1 Distance distance = tf.reduce_sum(tf.abs(tf.add(xtr, tf.neg(xte))), reduction_indices=1) # Predict: Get min distance index (Nearest neighbor) pred = tf.arg_min(distance, 0) #最近邻居算法,算最近的距离的邻居,并且获取该邻居的下标,这里只是基于空的类型,实现的graph,并未进行真实的计算。 accuracy = 0. # Initializing the variables init = tf.initialize_all_variables() #初始化所有的变量和未分配数值的占位符,这个过程是所有程序中必须做的,否则可能会读出随机数值。 # Launch the graph with tf.Session() as sess: sess.run(init) # loop over test data for i in range(len(Xte)): # Get nearest neighbor nn_index = sess.run(pred, feed_dict={xtr: Xtr, xte: Xte[i,:]}) # Get nearest neighbor class label and compare it to its true label print "Test", i, "Prediction:", np.argmax(Ytr[nn_index]), "True Class:", np.argmax(Yte[i]) # Calculate accuracy if np.argmax(Ytr[nn_index]) == np.argmax(Yte[i]): accuracy += 1./len(Xte) print "Done!" print "Accuracy:", accuracy #for循环迭代计算每一个测试数据的预测值,并且和真正的值进行对比,并计算精确度。该算法比较经典的是不需要提前训练,直接在测试阶段进行识别。
相关API:
tf.reduce_sum(input_tensor, reduction_indices=None, keep_dims=False, name=None)
Computes the sum of elements across dimensions of a tensor.
Reduces input_tensor
along the dimensions given in reduction_indices
. Unless keep_dims
is true, the rank of the tensor is reduced by 1 for each entry in reduction_indices
. If keep_dims
is true, the reduced dimensions are retained with length 1.
If reduction_indices
has no entries, all dimensions are reduced, and a tensor with a single element is returned.
For example:
# 'x' is [[1, 1, 1]
# [1, 1, 1]]
tf.reduce_sum(x) ==> 6
tf.reduce_sum(x, 0) ==> [2, 2, 2]
tf.reduce_sum(x, 1) ==> [3, 3]
tf.reduce_sum(x, 1, keep_dims=True) ==> [[3], [3]]
tf.reduce_sum(x, [0, 1]) ==> 6
Args:
input_tensor
: The tensor to reduce. Should have numeric type.reduction_indices
: The dimensions to reduce. IfNone
(the default), reduces all dimensions.keep_dims
: If true, retains reduced dimensions with length 1.name
: A name for the operation (optional).
Returns:
The reduced tensor.
点评:这个API主要是降维使用,在这个例子中,将测试图片和所有图片相加后的二维矩阵,降为每个图片只有一个最终结果的一维矩阵。