POJ 3259 Wormholes Bellman_ford负权回路
Description
While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ's farms comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..N, M (1 ≤ M ≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.
As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .
To help FJ find out whether this is possible or not, he will supply you with complete maps to F (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.
Input
Line 1 of each farm: Three space-separated integers respectively: N, M, and W
Lines 2.. M+1 of each farm: Three space-separated numbers ( S, E, T) that describe, respectively: a bidirectional path between S and E that requires T seconds to traverse. Two fields might be connected by more than one path.
Lines M+2.. M+ W+1 of each farm: Three space-separated numbers ( S, E, T) that describe, respectively: A one way path from S to E that also moves the traveler back T seconds.
Output
Sample Input 2 3 3 1 1 2 2 1 3 4 2 3 1 3 1 3 3 2 1 1 2 3 2 3 4 3 1 8
Sample Output NO YES
题意:
John的农场里N块地,M条路连接两块地,W个虫洞;路是双向的,虫洞是一条单向路,会在你离开之前把你传送到目的地,就是当你过去的时候时间会倒退Ts。我们的任务是知道会不会在从某块地出发后又回来,看到了离开之前的自己。
思路:
Bellman_ford判断一下有没有负权回路就行了。
代码:
#include<iostream> #include<cstdio> using namespace std; #define MAX 0x3f3f3f3f #define N 10100 int nodenum, edgenum, original; typedef struct Edge { int u, v; int cost; } Edge; Edge edge[N]; int flag; int dis[N]; bool Bellman_Ford() { for(int i = 1; i <= nodenum; ++i) dis[i] = MAX; int ok; dis[1]=0; for(int i = 1; i <= nodenum - 1; ++i) { ok=1; for(int j = 1; j <= flag; ++j) if(dis[edge[j].v] > dis[edge[j].u] + edge[j].cost) { dis[edge[j].v] = dis[edge[j].u] + edge[j].cost; ok=0; } if(ok) //优化这里,如果这趟没跟新任何节点就可以直接退出了。 break; } bool logo = 1; for(int i = 1; i <= flag; ++i) if(dis[edge[i].v] > dis[edge[i].u] + edge[i].cost) { logo = 0; break; } return logo; } int main() { int T,num; cin>>T; while(T--) { scanf("%d%d%d", &nodenum, &edgenum, &num); flag=1; int end,begin,power; for(int i = 1; i <= edgenum; i++) { scanf("%d%d%d", &begin,&end,&power); edge[flag].u=begin; edge[flag].v=end; edge[flag].cost=power; flag++; edge[flag].u=end; edge[flag].v=begin; edge[flag].cost=power; flag++; } for(int i=0; i<num; i++) { cin>>begin>>end>>power; edge[flag].u=begin; edge[flag].v=end; edge[flag].cost=-power;//注意这里是负的 flag++; } if(Bellman_Ford()==0) cout<<"YES"<<endl; else cout<<"NO"<<endl; } return 0; }