有多少人工,就有多少智能

模型部署 - TensorRT & Triton 学习

先介绍TensorRT、Triton的关系和区别:

TensorRT:为inference(推理)为生,是NVIDIA研发的一款针对深度学习模型在GPU上的计算,显著提高GPU上的模型推理性能。即一种专门针对高性能推理的模型框架,也可以解析其他框架的模型如tensorflow、torch。

主要优化手段如下:

 Triton:类似于TensorFlow Serving,但triton包括server和client。

 triton serving能够实现不同模型的统一部署和服务,提供http和grpc协议,给triton client请求模型推理。

---------------------------------------分割线------------------------------------------------

如果是要将模型和推理嵌入在服务或软硬件中,那么TensorRT是很好的选择,使用它来加载模型进行推理,提升性能(tensorrt runtime);

不然,常规的做法是模型推理和其他业务隔离,模型统一部署在triton server,然后其他业务通过triton client来进行模型推理的请求。

实验环境:Ubuntu18.04, GeForce RTX 2080Ti

Triton部署

安装

通过docker的形式,首先拉取镜像

# <xx.yy>为Triton的版本
docker pull nvcr.io/nvidia/tritonserver:<xx.yy>-py3

# 例如,拉取 20.12
docker pull nvcr.io/nvidia/tritonserver:20.12-py3

<要注意不同版本的tritonserver对cuda驱动最低版本要求,以及对应的tensorrt版本>

例如,20.12的版本需要NVIDIA Driver需要455以上,支持TensorRT 7.2.2。TensorRT版本要对应,不然模型可能会无法部署。

其他版本信息可以前往官网查看:

启动

CPU版本的启动 NVIDIA Triton Inference Server 

 

docker run --rm -p8000:8000 -p8001:8001 -p8002:8002 -v/full/path/to/docs/examples/model_repository:/models nvcr.io/nvidia/tritonserver:22.01-py3 tritonserver --model-repository=/models

GPU版本的启动,使用1个gpu

docker run --gpus=1 --rm -p8000:8000 -p8001:8001 -p8002:8002 -v/full/path/to/docs/examples/model_repository:/models nvcr.io/nvidia/tritonserver:22.01-py3 tritonserver --model-repository=/models
  • /full/path/to/docs/examples/model_repository:模型仓库的路径。除了本地文件系统,还支持Google Cloud、S3、Azure这些云存储:
  • --rm:表示容器停止运行时会删除容器
  • --gpus=1: 分配 1 个 GPU 资源给容器使用。
  • 8000为http端口,8001为grpc端口
  • -p8000:8000 -p8001:8001 -p8002:8002: 将容器内部的 8000、8001 和 8002 端口映射到宿主机的对应端口。这样可以从宿主机访问容器内部的服务。
  • -v/full/path/to/docs/examples/model_repository:/models: 将宿主机上的 /full/path/to/docs/examples/model_repository 目录挂载到容器内的 /models 目录。这样容器可以访问宿主机上的模型文件。
  • nvcr.io/nvidia/tritonserver:22.01-py3: 使用 NVIDIA 提供的 Triton Inference Server 22.01 版本的 Python 3 镜像作为容器的基础镜像。
  • tritonserver --model-repository=/models: 启动 Triton Inference Server 服务,并指定模型仓库目录为 /models,也就是我们挂载的宿主机目录。

正常启动的话,可以看到部署的模型运行状态,以及对外提供的服务端口

 

模型生成

Triton支持以下模型:TensorRT、ONNX、TensorFlow、Torch、OpenVINO、DALI,还有Python backend自定义生成的Python模型。

我们以一个简单的模型结构来演示:

我们以一个简单的模型结构来演示:

  1. INPUT0节点通过四则运算得到OUTPUT0节点;
  2. INPUT1节点通过embedding table映射为OUTPUT1

 

TensorFlow

tensorflow可以生成SavedModel或者GraphDef的模型格式

SavedModel模型需要按照以下的目录结构进行存储:

<model-repository-path>/
    <model-name>/
      config.pbtxt
      1/
        model.savedmodel/
           <saved-model files>

GraphDef:

<model-repository-path>/
    <model-name>/
      config.pbtxt
      1/
        model.graphdef
import os
import tensorflow as tf
from tensorflow.python.framework import graph_io


def create_modelfile(model_version_dir, max_batch,
                     save_type="graphdef",
                     version_policy=None):
    # your model net
    input0_shape = [None, 2]
    input1_shape = [None, 2]
    x1 = tf.placeholder(tf.float32, input0_shape, name='INPUT0')
    inputs_id = tf.placeholder(tf.int32, input1_shape, name='INPUT1')

    out = tf.add(tf.multiply(x1, 0.5), 2)

    embedding = tf.get_variable("embedding_table", shape=[100, 10])
    pre = tf.nn.embedding_lookup(embedding, inputs_id)

    out0 = tf.identity(out, "OUTPUT0")
    out1 = tf.identity(pre, "OUTPUT1")

    try:
        os.makedirs(model_version_dir)
    except OSError as ex:
        pass  # ignore existing dir

    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())

        if save_type == 'graphdef':
            create_graphdef_modelfile(model_version_dir, sess,
                                      outputs=["OUTPUT0", "OUTPUT1"])
        elif save_type == 'savemodel':
            create_savedmodel_modelfile(model_version_dir,
                                        sess,
                                        inputs={
                                            "INPUT0": x1,
                                            "INPUT1": inputs_id
                                        },
                                        outputs={
                                            "OUTPUT0": out,
                                            "OUTPUT1": pre
                                        })
        else:
            raise ValueError("save_type must be one of ['tensorflow_graphdef', 'tensorflow_savedmodel']")

    create_modelconfig(models_dir=os.path.dirname(model_version_dir),
                       max_batch=max_batch,
                       save_type=save_type,
                       version_policy=version_policy)


def create_graphdef_modelfile(model_version_dir, sess, outputs):
    """
    tensorflow graphdef只能保存constant,无法保存Variable
    可以借助tf.graph_util.convert_variables_to_constants将Variable转化为constant
    :param model_version_dir:
    :param sess:
    :return:
    """
    graph = sess.graph.as_graph_def()
    new_graph = tf.graph_util.convert_variables_to_constants(sess=sess,
                                                             input_graph_def=graph,
                                                             output_node_names=outputs)
    graph_io.write_graph(new_graph,
                         model_version_dir,
                         "model.graphdef",
                         as_text=False)


def create_savedmodel_modelfile(model_version_dir, sess, inputs, outputs):
    """

    :param model_version_dir:
    :param sess:
    :param inputs: dict, {input_name: input_tensor}
    :param outputs: dict, {output_name: output_tensor}
    :return:
    """
    tf.saved_model.simple_save(sess,
                               model_version_dir + "/model.savedmodel",
                               inputs=inputs,
                               outputs=outputs)

torch

pytorch模型的目录结构格式:

<model-repository-path>/
<model-name>/
config.pbtxt
1/
model.pt
import os
import torch
from torch import nn


class MyNet(nn.Module):

    def __init__(self):
        super(MyNet, self).__init__()

        self.embedding = nn.Embedding(num_embeddings=100,
                                      embedding_dim=10)

    def forward(self, input0, input1):
        # tf.add(tf.multiply(x1, 0.5), 2)
        output0 = torch.add(torch.multiply(input0, 0.5), 2)

        output1 = self.embedding(input1)

        return output0, output1


def create_modelfile(model_version_dir, max_batch,
                     version_policy=None):
    # your model net

    # 定义输入的格式
    example_input0 = torch.zeros([2], dtype=torch.float32)
    example_input1 = torch.zeros([2], dtype=torch.int32)

    my_model = MyNet()

    traced = torch.jit.trace(my_model, (example_input0, example_input1))

    try:
        os.makedirs(model_version_dir)
    except OSError as ex:
        pass  # ignore existing dir

    traced.save(model_version_dir + "/model.pt")

ONNX

ONNX的目录结构:

<model-repository-path>/
    <model-name>/
      config.pbtxt
      1/
        model.onnx

ONNX提供一种开源的深度学习和传统的机器学习模型格式,目的在于模型在不同框架之间进行转移。

下面我们介绍最常用的tensorflow和torch模型转成ONNX的方法。

tensorflow模型 --> ONNX

pip install -U tf2onnx

# savedmodel
python -m tf2onnx.convert --saved-model tensorflow-model-path --output model.onnx

# checkpoint
python -m tf2onnx.convert --checkpoint tensorflow-model-meta-file-path --output model.onnx --inputs input0:0,input1:0 --outputs output0:0

# graphdef
python -m tf2onnx.convert --graphdef tensorflow-model-graphdef-file --output model.onnx --inputs input0:0,input1:0 --outputs output0:0

torch --> ONNX

import os
import torch
import torch.onnx


def torch2onnx(model_version_dir, max_batch):
    # 定义输入的格式
    example_input0 = torch.zeros([max_batch, 2], dtype=torch.float32)
    example_input1 = torch.zeros([max_batch, 2], dtype=torch.int32)

    my_model = MyNet()

    try:
        os.makedirs(model_version_dir)
    except OSError as ex:
        pass  # ignore existing dir

    torch.onnx.export(my_model,
                      (example_input0, example_input1),
                      os.path.join(model_version_dir, 'model.onnx'),
                      # 输入节点的名称
                      input_names=("INPUT0", "INPUT1"),
                      # 输出节点的名称
                      output_names=("OUTPUT0", "OUTPUT1"),
                      # 设置batch_size的维度
                      dynamic_axes={"INPUT0": [0], "INPUT1": [0], "OUTPUT0": [0], "OUTPUT1": [0]},
                      verbose=True)

TensorRT

需要注意:TensorRT仅支持GPU。

<model-repository-path>/
    <model-name>/
      config.pbtxt
      1/
        model.plan

比较推荐的方式是从ONNX解析得到TensorRT模型(TensorRT)

import tensorrt as trt
import os


def onnx2trt(model_version_dir, onnx_model_file, max_batch):
    logger = trt.Logger(trt.Logger.WARNING)

    builder = trt.Builder(logger)

    # The EXPLICIT_BATCH flag is required in order to import models using the ONNX parser
    network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))

    parser = trt.OnnxParser(network, logger)

    success = parser.parse_from_file(onnx_model_file)
    for idx in range(parser.num_errors):
        print(parser.get_error(idx))

    if not success:
        pass  # Error handling code here

    profile = builder.create_optimization_profile()
    # INPUT0可以接收[1, 2] -> [max_batch, 2]的维度
    profile.set_shape("INPUT0", [1, 2], [1, 2], [max_batch, 2])
    profile.set_shape("INPUT1", [1, 2], [1, 2], [max_batch, 2])

    config = builder.create_builder_config()
    config.add_optimization_profile(profile)

    # tensorrt 8.x
    # config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, 1 << 20)  # 1 MiB

    # tensorrt 7.x
    config.max_workspace_size = 1 << 20

    try:
        engine_bytes = builder.build_serialized_network(network, config)
    except AttributeError:
        engine = builder.build_engine(network, config)
        engine_bytes = engine.serialize()
        del engine

    with open(os.path.join(model_version_dir, 'model.plan'), "wb") as f:
        f.write(engine_bytes)

模型配置文件

name: "tf_savemodel"
platform: "tensorflow_savedmodel"
max_batch_size: 8
version_policy: { latest { num_versions: 1 }}
input [
  {
    name: "INPUT0"
    data_type: TYPE_FP32
    dims: [ 2 ]
  },
  {
    name: "INPUT1"
    data_type: TYPE_INT32
    dims: [ 2 ]
  }
]
output [
  {
    name: "OUTPUT0"
    data_type: TYPE_FP32
    dims: [ 2 ]
  },
  {
    name: "OUTPUT1"
    data_type: TYPE_FP32
    dims: [ 2,10 ]
  }
]

name:模型名称,要跟模型路径对应。

platform:不同的模型存储格式都有自己对应的值。

max_batch_size:最大的batch_size,客户端超过这个batch_size的请求会报错。

version_policy:版本控制,这里是使用最新的一个版本。

input、output:输入和输出节点的名称,数据类型,维度。

维度一般不包括batch_size这个维度;

下表为不同框架对应的platform:

 下表是不同框架的数据类型对应关系:Model Config是配置文件的,API是triton client。其他框架是c++源码的命名空间,不过很好理解,主要包括16位和32位的int和float等等。

 

Triton Client

上述提到了,我们可以通过triton client来进行模型推理的请求,并且提供了http和grpc两种协议。

接下来,将以python来演示,仍然是上面那个简单的模型请求例子。

# 安装依赖包
pip install tritonclient[all]
import gevent.ssl
import numpy as np
import tritonclient.http as httpclient


def client_init(url="localhost:8000",
                ssl=False, key_file=None, cert_file=None, ca_certs=None, insecure=False,
                verbose=False):
    """

    :param url:
    :param ssl: Enable encrypted link to the server using HTTPS
    :param key_file: File holding client private key
    :param cert_file: File holding client certificate
    :param ca_certs: File holding ca certificate
    :param insecure: Use no peer verification in SSL communications. Use with caution
    :param verbose: Enable verbose output
    :return:
    """
    if ssl:
        ssl_options = {}
        if key_file is not None:
            ssl_options['keyfile'] = key_file
        if cert_file is not None:
            ssl_options['certfile'] = cert_file
        if ca_certs is not None:
            ssl_options['ca_certs'] = ca_certs
        ssl_context_factory = None
        if insecure:
            ssl_context_factory = gevent.ssl._create_unverified_context
        triton_client = httpclient.InferenceServerClient(
            url=url,
            verbose=verbose,
            ssl=True,
            ssl_options=ssl_options,
            insecure=insecure,
            ssl_context_factory=ssl_context_factory)
    else:
        triton_client = httpclient.InferenceServerClient(
            url=url, verbose=verbose)

    return triton_client


def infer(triton_client, model_name,
          input0='INPUT0', input1='INPUT1',
          output0='OUTPUT0', output1='OUTPUT1',
          request_compression_algorithm=None,
          response_compression_algorithm=None):
    """

    :param triton_client:
    :param model_name:
    :param input0:
    :param input1:
    :param output0:
    :param output1:
    :param request_compression_algorithm: Optional HTTP compression algorithm to use for the request body on client side.
            Currently supports "deflate", "gzip" and None. By default, no compression is used.
    :param response_compression_algorithm:
    :return:
    """
    inputs = []
    outputs = []
    # batch_size=8
    # 如果batch_size超过配置文件的max_batch_size,infer则会报错
    # INPUT0、INPUT1为配置文件中的输入节点名称
    inputs.append(httpclient.InferInput(input0, [8, 2], "FP32"))
    inputs.append(httpclient.InferInput(input1, [8, 2], "INT32"))

    # Initialize the data
    # np.random.seed(2022)
    inputs[0].set_data_from_numpy(np.random.random([8, 2]).astype(np.float32), binary_data=False)
    # np.random.seed(2022)
    inputs[1].set_data_from_numpy(np.random.randint(0, 20, [8, 2]).astype(np.int32), binary_data=False)

    # OUTPUT0、OUTPUT1为配置文件中的输出节点名称
    outputs.append(httpclient.InferRequestedOutput(output0, binary_data=False))
    outputs.append(httpclient.InferRequestedOutput(output1,
                                                   binary_data=False))
    query_params = {'test_1': 1, 'test_2': 2}
    results = triton_client.infer(
        model_name=model_name,
        inputs=inputs,
        outputs=outputs,
        request_compression_algorithm=request_compression_algorithm,
        response_compression_algorithm=response_compression_algorithm)
    print(results)
    # 转化为numpy格式
    print(results.as_numpy(output0))
    print(results.as_numpy(output1))

 

grpc的代码基本相同,就不展示了,

 

posted @ 2024-07-13 18:42  lvdongjie-avatarx  阅读(26)  评论(0编辑  收藏  举报