Franka Robot demo 外部控制循环生成关节速度运动 (generate_joint_velocity_motion_external_control_loop.cpp)
// Copyright (c) 2023 Franka Robotics GmbH // Use of this source code is governed by the Apache-2.0 license, see LICENSE #include <cmath> #include <iostream> #include <franka/active_control.h> #include <franka/active_motion_generator.h> #include <franka/exception.h> #include <franka/robot.h> #include "examples_common.h" /** * @example generate_joint_velocity_motion_external_control_loop.cpp * An example showing how to generate a joint velocity motion with an external control loop. * * @warning Before executing this example, make sure there is enough space in front of the robot. */ /** * @example generate_joint_velocity_motion_external_control_loop.cpp * 一个演示如何通过外部控制循环生成关节速度运动的示例。 * * @warning 在执行此示例之前,请确保机器人前方有足够的空间。 */ int main(int argc, char** argv) { // Check whether the required arguments were passed if (argc != 2) { std::cerr << "Usage: " << argv[0] << " <robot-hostname>" << std::endl; return -1; } try { franka::Robot robot(argv[1]); // 连接机器人 setDefaultBehavior(robot); // 设置默认行为 // First move the robot to a suitable joint configuration std::array<double, 7> q_goal = {{0, -M_PI_4, 0, -3 * M_PI_4, 0, M_PI_2, M_PI_4}}; MotionGenerator motion_generator(0.5, q_goal); std::cout << "WARNING: This example will move the robot! " << "Please make sure to have the user stop button at hand!" << std::endl << "Press Enter to continue..." << std::endl; std::cin.ignore(); robot.control(motion_generator); // 控制机器人运动到合适的位姿 std::cout << "Finished moving to initial joint configuration." << std::endl; // Set additional parameters always before the control loop, NEVER in the control loop! // Set collision behavior. robot.setCollisionBehavior(// 重设碰撞行为 {{20.0, 20.0, 18.0, 18.0, 16.0, 14.0, 12.0}}, {{20.0, 20.0, 18.0, 18.0, 16.0, 14.0, 12.0}}, {{20.0, 20.0, 18.0, 18.0, 16.0, 14.0, 12.0}}, {{20.0, 20.0, 18.0, 18.0, 16.0, 14.0, 12.0}}, {{20.0, 20.0, 20.0, 25.0, 25.0, 25.0}}, {{20.0, 20.0, 20.0, 25.0, 25.0, 25.0}}, {{20.0, 20.0, 20.0, 25.0, 25.0, 25.0}}, {{20.0, 20.0, 20.0, 25.0, 25.0, 25.0}}); double time_max = 1.0; // 最大运行时间 double omega_max = 1.0; // 最大运行角速度 double time = 0.0; // 累计运行时间 auto callback_control = [=, &time](const franka::RobotState&, // 控制循环回调 franka::Duration period) -> franka::JointVelocities { time += period.toSec(); double cycle = std::floor(std::pow(-1.0, (time - std::fmod(time, time_max)) / time_max)); double omega = cycle * omega_max / 2.0 * (1.0 - std::cos(2.0 * M_PI / time_max * time)); franka::JointVelocities velocities = {{0.0, 0.0, 0.0, omega, omega, omega, omega}}; if (time >= 2 * time_max) { std::cout << std::endl << "Finished motion, shutting down example" << std::endl; return franka::MotionFinished(velocities); } return velocities; }; ////// 外部控制循环 bool motion_finished = false; auto active_control = robot.startJointVelocityControl(// 开启关节速度运动 research_interface::robot::Move::ControllerMode::kJointImpedance);// 关节阻抗 while (!motion_finished) { auto read_once_return = active_control->readOnce();//读取机器人状态 auto robot_state = read_once_return.first; auto duration = read_once_return.second; auto joint_velocities = callback_control(robot_state, duration);// 生成速度 motion_finished = joint_velocities.motion_finished;//获取完成标志 active_control->writeOnce(joint_velocities);//写入关节速度 } } catch (const franka::Exception& e) { std::cout << e.what() << std::endl; return -1; } return 0; }
- 初始化和连接:通过命令行参数连接到机器人,并设置默认行为。
- 运动到初始位置:将机器人移动到一个预定义的关节配置,以确保其处于合适的初始位置。
- 设置碰撞行为:在控制循环之前设置碰撞行为参数,以确保机器人在运动过程中能够正确处理碰撞。
- 关节速度控制循环:通过正弦波函数生成关节速度,并控制关节运动。在控制循环中,机器人关节会按照一个正弦波的模式进行运动,直到运动完成。
- 异常处理:捕获并处理可能出现的异常,确保程序能够正确终止。
这个示例展示了如何通过外部控制循环生成机器人关节速度运动,并确保安全和稳定的操作。