Franka Robot demo 基于加速度及速度连续曲线的关节位置运动生成器及控制demo(joint_point_to_point_motion.cpp)
// Copyright (c) 2023 Franka Robotics GmbH // Use of this source code is governed by the Apache-2.0 license, see LICENSE #include <cmath> #include <iostream> #include <franka/exception.h> #include <franka/robot.h> #include "examples_common.h" /** * @example joint_point_to_point_motion.cpp * An example that moves the robot to a target position by commanding joint positions. * * @warning Before executing this example, make sure there is enough space in front of the robot. */ /** * @example joint_point_to_point_motion.cpp * 一个通过命令关节位置将机器人移动到目标位置的示例。 * * @warning 在执行这个示例之前,请确保机器人前方有足够的空间。 */ int main(int argc, char** argv) { if (argc != 10) { std::cerr << "Usage: " << argv[0] << " <robot-hostname> " << "<joint0> <joint1> <joint2> <joint3> <joint4> <joint5> <joint6> " << "<speed-factor>" << std::endl << "joint0 to joint6 are joint angles in [rad]." << std::endl << "speed-factor must be between zero and one." << std::endl; return -1; } try { franka::Robot robot(argv[1]); // 连接机器人 setDefaultBehavior(robot); // 机器人默认行为 std::array<double, 7> q_goal; // 存储目标角度 for (size_t i = 0; i < 7; i++) { q_goal[i] = std::stod(argv[i + 2]); // 解析角度 } double speed_factor = std::stod(argv[9]); // 速度比例因子 // Set additional parameters always before the control loop, NEVER in the control loop! // Set collision behavior. 设置碰撞行为 robot.setCollisionBehavior( {{20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0}}, {{20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0}}, {{10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0}}, {{10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0}}, {{20.0, 20.0, 20.0, 20.0, 20.0, 20.0}}, {{20.0, 20.0, 20.0, 20.0, 20.0, 20.0}}, {{10.0, 10.0, 10.0, 10.0, 10.0, 10.0}}, {{10.0, 10.0, 10.0, 10.0, 10.0, 10.0}}); // 运动生成器 MotionGenerator motion_generator(speed_factor, q_goal); // 运动生成器 std::cout << "WARNING: This example will move the robot! " << "Please make sure to have the user stop button at hand!" << std::endl << "Press Enter to continue..." << std::endl; std::cin.ignore(); robot.control(motion_generator); std::cout << "Motion finished" << std::endl; } catch (const franka::Exception& e) { std::cout << e.what() << std::endl; return -1; } return 0; }
/** * @file examples_common.h * Contains common types and functions for the examples. */ /** * Sets a default collision behavior, joint impedance and Cartesian impedance. * * @param[in] robot Robot instance to set behavior on. */ void setDefaultBehavior(franka::Robot& robot); /** * An example showing how to generate a joint pose motion to a goal position. Adapted from: * Wisama Khalil and Etienne Dombre. 2002. Modeling, Identification and Control of Robots * (Kogan Page Science Paper edition). */ class MotionGenerator { public: /** * Creates a new MotionGenerator instance for a target q. * * @param[in] speed_factor General speed factor in range [0, 1]. * @param[in] q_goal Target joint positions. */ MotionGenerator(double speed_factor, const std::array<double, 7> q_goal); /** * Sends joint position calculations * * @param[in] robot_state Current state of the robot. * @param[in] period Duration of execution. * * @return Joint positions for use inside a control loop. */ franka::JointPositions operator()(const franka::RobotState& robot_state, franka::Duration period); private: using Vector7d = Eigen::Matrix<double, 7, 1, Eigen::ColMajor>; using Vector7i = Eigen::Matrix<int, 7, 1, Eigen::ColMajor>; bool calculateDesiredValues(double t, Vector7d* delta_q_d) const; void calculateSynchronizedValues(); static constexpr double kDeltaQMotionFinished = 1e-6; const Vector7d q_goal_; Vector7d q_start_; Vector7d delta_q_; Vector7d dq_max_sync_; Vector7d t_1_sync_; Vector7d t_2_sync_; Vector7d t_f_sync_; Vector7d q_1_; double time_ = 0.0; Vector7d dq_max_ = (Vector7d() << 2.0, 2.0, 2.0, 2.0, 2.5, 2.5, 2.5).finished(); Vector7d ddq_max_start_ = (Vector7d() << 5, 5, 5, 5, 5, 5, 5).finished(); Vector7d ddq_max_goal_ = (Vector7d() << 5, 5, 5, 5, 5, 5, 5).finished(); };
// Copyright (c) 2023 Franka Robotics GmbH // Use of this source code is governed by the Apache-2.0 license, see LICENSE #include "examples_common.h" #include <algorithm> #include <array> #include <cmath> #include <franka/exception.h> #include <franka/robot.h> void setDefaultBehavior(franka::Robot& robot) { robot.setCollisionBehavior( {{20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0}}, {{20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0}}, {{10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0}}, {{10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0}}, {{20.0, 20.0, 20.0, 20.0, 20.0, 20.0}}, {{20.0, 20.0, 20.0, 20.0, 20.0, 20.0}}, {{10.0, 10.0, 10.0, 10.0, 10.0, 10.0}}, {{10.0, 10.0, 10.0, 10.0, 10.0, 10.0}}); robot.setJointImpedance({{3000, 3000, 3000, 2500, 2500, 2000, 2000}}); robot.setCartesianImpedance({{3000, 3000, 3000, 300, 300, 300}}); } MotionGenerator::MotionGenerator(double speed_factor, const std::array<double, 7> q_goal) : q_goal_(q_goal.data()) { dq_max_ *= speed_factor; ddq_max_start_ *= speed_factor; ddq_max_goal_ *= speed_factor; dq_max_sync_.setZero(); q_start_.setZero(); delta_q_.setZero(); t_1_sync_.setZero(); t_2_sync_.setZero(); t_f_sync_.setZero(); q_1_.setZero(); } /** * MotionGenerator::calculateDesiredValues 函数 * * 这个函数计算在时间 t 时刻每个关节的目标位置变化量 delta_q_d。 * * @param t 当前时间。 * @param delta_q_d 存储计算出的目标位置变化量的向量。 * @return 如果所有关节的运动都已完成,则返回 true,否则返回 false。 */ bool MotionGenerator::calculateDesiredValues(double t, Vector7d* delta_q_d) const { Vector7i sign_delta_q; sign_delta_q << delta_q_.cwiseSign().cast<int>(); // 获取每个关节位置变化量的符号 Vector7d t_d = t_2_sync_ - t_1_sync_; Vector7d delta_t_2_sync = t_f_sync_ - t_2_sync_; std::array<bool, 7> joint_motion_finished{}; // 用于记录每个关节的运动是否完成 for (size_t i = 0; i < 7; i++) { if (std::abs(delta_q_[i]) < kDeltaQMotionFinished) {// 如果关节位置变化量小于阈值,则认为运动已完成 (*delta_q_d)[i] = 0; joint_motion_finished[i] = true; } else {// 根据时间段计算目标位置变化量 if (t < t_1_sync_[i]) {//计算关节 i 的目标位置变化量,使用三次方计算公式 (*delta_q_d)[i] = -1.0 / std::pow(t_1_sync_[i], 3.0) * dq_max_sync_[i] * sign_delta_q[i] * (0.5 * t - t_1_sync_[i]) * std::pow(t, 3.0); } else if (t >= t_1_sync_[i] && t < t_2_sync_[i]) {//// 计算关节 i 的目标位置变化量,使用线性插值公式 (*delta_q_d)[i] = q_1_[i] + (t - t_1_sync_[i]) * dq_max_sync_[i] * sign_delta_q[i]; } else if (t >= t_2_sync_[i] && t < t_f_sync_[i]) {//// 计算关节 i 的目标位置变化量,使用三次方缓和曲线公式 (*delta_q_d)[i] = delta_q_[i] + 0.5 * (1.0 / std::pow(delta_t_2_sync[i], 3.0) * (t - t_1_sync_[i] - 2.0 * delta_t_2_sync[i] - t_d[i]) * std::pow((t - t_1_sync_[i] - t_d[i]), 3.0) + (2.0 * t - 2.0 * t_1_sync_[i] - delta_t_2_sync[i] - 2.0 * t_d[i])) * dq_max_sync_[i] * sign_delta_q[i]; } else { (*delta_q_d)[i] = delta_q_[i]; joint_motion_finished[i] = true; } } } // 如果所有关节的运动都已完成,则返回 true return std::all_of(joint_motion_finished.cbegin(), joint_motion_finished.cend(), [](bool x) { return x; }); } void MotionGenerator::calculateSynchronizedValues() { Vector7d dq_max_reach(dq_max_); Vector7d t_f = Vector7d::Zero(); Vector7d delta_t_2 = Vector7d::Zero(); Vector7d t_1 = Vector7d::Zero(); Vector7d delta_t_2_sync = Vector7d::Zero(); Vector7i sign_delta_q; sign_delta_q << delta_q_.cwiseSign().cast<int>(); for (size_t i = 0; i < 7; i++) { if (std::abs(delta_q_[i]) > kDeltaQMotionFinished) { if (std::abs(delta_q_[i]) < (3.0 / 4.0 * (std::pow(dq_max_[i], 2.0) / ddq_max_start_[i]) + 3.0 / 4.0 * (std::pow(dq_max_[i], 2.0) / ddq_max_goal_[i]))) { dq_max_reach[i] = std::sqrt(4.0 / 3.0 * delta_q_[i] * sign_delta_q[i] * (ddq_max_start_[i] * ddq_max_goal_[i]) / (ddq_max_start_[i] + ddq_max_goal_[i])); } t_1[i] = 1.5 * dq_max_reach[i] / ddq_max_start_[i]; delta_t_2[i] = 1.5 * dq_max_reach[i] / ddq_max_goal_[i]; t_f[i] = t_1[i] / 2.0 + delta_t_2[i] / 2.0 + std::abs(delta_q_[i]) / dq_max_reach[i]; } } double max_t_f = t_f.maxCoeff(); for (size_t i = 0; i < 7; i++) { if (std::abs(delta_q_[i]) > kDeltaQMotionFinished) { double a = 1.5 / 2.0 * (ddq_max_goal_[i] + ddq_max_start_[i]); double b = -1.0 * max_t_f * ddq_max_goal_[i] * ddq_max_start_[i]; double c = std::abs(delta_q_[i]) * ddq_max_goal_[i] * ddq_max_start_[i]; double delta = b * b - 4.0 * a * c; if (delta < 0.0) { delta = 0.0; } dq_max_sync_[i] = (-1.0 * b - std::sqrt(delta)) / (2.0 * a); t_1_sync_[i] = 1.5 * dq_max_sync_[i] / ddq_max_start_[i]; delta_t_2_sync[i] = 1.5 * dq_max_sync_[i] / ddq_max_goal_[i]; t_f_sync_[i] = (t_1_sync_)[i] / 2.0 + delta_t_2_sync[i] / 2.0 + std::abs(delta_q_[i] / dq_max_sync_[i]); t_2_sync_[i] = (t_f_sync_)[i] - delta_t_2_sync[i]; q_1_[i] = (dq_max_sync_)[i] * sign_delta_q[i] * (0.5 * (t_1_sync_)[i]); } } } franka::JointPositions MotionGenerator::operator()(const franka::RobotState& robot_state, franka::Duration period) { time_ += period.toSec(); if (time_ == 0.0) { q_start_ = Vector7d(robot_state.q_d.data()); delta_q_ = q_goal_ - q_start_; calculateSynchronizedValues(); } Vector7d delta_q_d; bool motion_finished = calculateDesiredValues(time_, &delta_q_d); std::array<double, 7> joint_positions; Eigen::VectorXd::Map(&joint_positions[0], 7) = (q_start_ + delta_q_d); franka::JointPositions output(joint_positions); output.motion_finished = motion_finished; return output; }