有多少人工,就有多少智能

随笔分类 -  深度学习

摘要:先介绍几个物体检测的相关知识 不同于分类问题,物体检测可能会存在多个检测目标,这不仅需要我们判别出各个物体的类别,而且还要准确定位出物体的位置 下面图片上有猫,有狗,还有小黄鸭,这是多物体检测: 1.png 物体检测算法常用到的概念 下面我们讲解一下在物体检测算法中常用到的几个概念:Bbox,IoU 阅读全文
posted @ 2021-04-10 18:54 lvdongjie-avatarx 阅读(105) 评论(0) 推荐(0) 编辑
摘要: 阅读全文
posted @ 2021-04-07 07:37 lvdongjie-avatarx 阅读(125) 评论(0) 推荐(0) 编辑
摘要:用3D卷积做视频特征提取,这样时间和空间信息就都包含在内了。 3D卷积+RNN时间序列 应该是对视频处理的一个较好解决方案。 阅读全文
posted @ 2021-04-05 10:11 lvdongjie-avatarx 阅读(260) 评论(0) 推荐(0) 编辑
摘要:如何以图学图 用图片做标签 阅读全文
posted @ 2021-04-05 10:07 lvdongjie-avatarx 阅读(78) 评论(0) 推荐(0) 编辑
摘要:什么是CPU? 中央处理器(CPU),是电子计算机的主要设备之一,电脑中的核心配件。其功能主要是解释计算机指令以及处理计算机软件中的数据。CPU是计算机中负责读取指令,对指令译码并执行指令的核心部件。中央处理器主要包括两个部分,即控制器、运算器,其中还包括高速及实现它们缓冲处理器之间联系的数据、控制 阅读全文
posted @ 2021-04-03 20:24 lvdongjie-avatarx 阅读(1111) 评论(0) 推荐(0) 编辑
摘要:https://www.nvidia.cn/autonomous-machines/embedded-systems/jetson-tx2/ 阅读全文
posted @ 2021-04-03 20:15 lvdongjie-avatarx 阅读(78) 评论(0) 推荐(0) 编辑
摘要:1 介绍 NVIDA Jeston TX2套件是一个用于AI计算的全功能开发平台,通过预装的Linux系统环境(具体为ubuntu系统)帮助使用者快速的启动并运行。开发套件包含许多通用的API接口并且支持英伟达所有的开发工具。该开发套件板载了许多硬件接口,可以灵活的扩展相关应用。 在网址https: 阅读全文
posted @ 2021-04-03 20:07 lvdongjie-avatarx 阅读(483) 评论(0) 推荐(0) 编辑
摘要:“Xavier”初始化方法是一种很有效的神经网络初始化方法,方法来源于2010年的一篇论文《Understanding the difficulty of training deep feedforward neural networks》,可惜直到近两年,这个方法才逐渐得到更多人的应用和认可。 为 阅读全文
posted @ 2021-04-01 21:15 lvdongjie-avatarx 阅读(943) 评论(0) 推荐(0) 编辑
摘要:TensorBoard是TensorFlow下的一个可视化的工具,能够帮助我们在训练大规模神经网络过程中出现的复杂且不好理解的运算。 TensorBoard能展示你训练过程中绘制的图像、网络结构等。 1.构建简单的TensorBoard日志输出 import tensorflow as tf inp 阅读全文
posted @ 2021-04-01 21:08 lvdongjie-avatarx 阅读(885) 评论(0) 推荐(0) 编辑
摘要:模型文件的保存 tensorflow将模型保持到本地会生成4个文件: meta文件:保存了网络的图结构,包含变量、op、集合等信息 ckpt文件: 二进制文件,保存了网络中所有权重、偏置等变量数值,分为两个文件,一个是.data-00000-of-00001 文件,一个是 .index 文件 che 阅读全文
posted @ 2021-04-01 21:04 lvdongjie-avatarx 阅读(105) 评论(0) 推荐(0) 编辑
摘要:TFRecord生成 一、为什么使用TFRecord? 正常情况下我们训练文件夹经常会生成 train, test 或者val文件夹,这些文件夹内部往往会存着成千上万的图片或文本等文件,这些文件被散列存着,这样不仅占用磁盘空间,并且再被一个个读取的时候会非常慢,繁琐。占用大量内存空间(有的大型数据不 阅读全文
posted @ 2021-04-01 21:00 lvdongjie-avatarx 阅读(160) 评论(0) 推荐(0) 编辑
摘要:应用场景 假如我们有一系列诉求是把图片识别成一个特定分类、比如 把图片分类成为猫、狗、狼等 把图片分类成为奔驰、宝马、奥迪 ... 几乎很少有人从头训练网络、复用只有训练的网络参数适应新的数据集、参考transfer-learning In practice, very few people tra 阅读全文
posted @ 2021-04-01 20:54 lvdongjie-avatarx 阅读(410) 评论(0) 推荐(0) 编辑
摘要:LeNet-5、AlexNet、ZFNet、VGGNet、GoogleNet、ResNet,ResNeXt,DenseNet,Shake Shake,SeNet,MobileNet,ShuffleNet,DarkNet LeNet:最早用于数字识别的CNN AlexNet:2012年ILSVRC比赛 阅读全文
posted @ 2021-04-01 07:12 lvdongjie-avatarx 阅读(461) 评论(0) 推荐(0) 编辑
摘要:整个优化系列文章列表: Deep Learning 之 最优化方法 Deep Learning 最优化方法之SGD Deep Learning 最优化方法之Momentum(动量) Deep Learning 最优化方法之Nesterov(牛顿动量) Deep Learning 最优化方法之AdaG 阅读全文
posted @ 2021-03-27 15:57 lvdongjie-avatarx 阅读(274) 评论(0) 推荐(0) 编辑
摘要:批归一化方法方法(Batch Normalization,BatchNorm)是由Ioffe和Szegedy于2015年提出的,已被广泛应用在深度学习中,其目的是对神经网络中间层的输出进行标准化处理,使得中间层的输出更加稳定。 通常我们会对神经网络的数据进行标准化处理,处理后的样本数据集满足均值为0 阅读全文
posted @ 2021-03-27 15:33 lvdongjie-avatarx 阅读(1325) 评论(0) 推荐(0) 编辑
摘要:一、卷积(Convolution) 那么究竟什么是卷积呢?你可能还记得我之前的博客,我们使用了一个小的滤波器(Filter),并在整个图像上滑动这个滤波器。然后,将图像的像素值与滤波器中的像素值相乘。使用深度学习的优雅之处在于我们不必考虑这些滤波器应该是什么样的(神经网络会自动学习并选取最佳的滤波器 阅读全文
posted @ 2021-03-25 20:50 lvdongjie-avatarx 阅读(632) 评论(0) 推荐(0) 编辑