MapReduce原理2

MapReduce的shuffle机制

1、概述

  • mapreduce中,map阶段处理的数据如何传递给reduce阶段,是mapreduce框架中最关键的一个流程,这个流程就叫shuffle
  • shuffle: 洗牌、发牌——(核心机制:数据分区,排序,缓存
  • 具体来说:就是maptask输出的处理结果数据,分发给reducetask,并在分发的过程中,对数据按key进行了分区和排序

 

2、主要流程

shuffleMR处理流程中的一个过程,它的每一个处理步骤是分散在各个map taskreduce task节点上完成的,整体来看,分为3个操作:

  1. 分区partition
  2. Sort根据key排序
  3. Combiner进行局部value的合并

3、详细流程

  1. maptask收集我们的map()方法输出的kv对,放到内存缓冲区中
  2. 从内存缓冲区不断溢出本地磁盘文件,可能会溢出多个文件
  3. 多个溢出文件会被合并成大的溢出文件
  4. 在溢出过程中,及合并的过程中,都要调用partitoner进行分组和针对key进行排序
  5. reducetask根据自己的分区号,去各个maptask机器上取相应的结果分区数据
  6. reducetask会取到同一个分区的来自不同maptask的结果文件,reducetask会将这些文件再进行合并(归并排序)
  7. 合并成大文件后,shuffle的过程也就结束了,后面进入reducetask的逻辑运算过程(从文件中取出一个一个的键值对group,调用用户自定义的reduce()方法)

Shuffle中的缓冲区大小会影响到mapreduce程序的执行效率,原则上说,缓冲区越大,磁盘io的次数越少,执行速度就越快

缓冲区的大小可以通过参数调整,  参数:io.sort.mb  默认100M

4、详细流程图

 


 

MapReduce中的序列化

1、概述

Java的序列化是一个重量级序列化框架(Serializable,一个对象被序列化后,会附带很多额外的信息(各种校验信息,header,继承体系...),不便于在网络中高效传输;

所以,hadoop自己开发了一套序列化机制(Writable),精简,高效

2、自定义对象实现MR中的序列化接口(具体代码实现见《自定义排序及Hadoop序列化》)

如果需要将自定义的bean放在key中传输,则还需要实现comparable接口,因为mapreduce框中的shuffle过程一定会对key进行排序,此时,自定义的bean实现的接口应该是:

public  class  FlowBean  implements  WritableComparable<FlowBean> 

 


 

MapReduce与YARN

1、yarn介绍

 Yarn是一个资源调度平台负责为运算程序提供服务器运算资源,相当于一个分布式的操作系统平台,而mapreduce等运算程序则相当于运行于操作系统之上的应用程序

2、Yarn中的重要概念

  1. yarn并不清楚用户提交的程序的运行机制
  2. yarn只提供运算资源的调度(用户程序向yarn申请资源,yarn就负责分配资源)
  3. yarn中的主管角色叫ResourceManager
  4. yarn中具体提供运算资源的角色叫NodeManager
  5. 这样一来,yarn其实就与运行的用户程序完全解耦,就意味着yarn上可以运行各种类型的分布式运算程序(mapreduce只是其中的一种),比如mapreducestorm程序,spark程序,tez ……
  6. 所以,sparkstorm等运算框架都可以整合在yarn上运行,只要他们各自的框架中有符合yarn规范的资源请求机制即可
  7. Yarn就成为一个通用的资源调度平台,从此,企业中以前存在的各种运算集群都可以整合在一个物理集群上,提高资源利用率,方便数据共享

3、Yarn中运行运算程序(mr程序调度过程)

 

 

posted @ 2017-05-01 22:25  ahu-lichang  阅读(497)  评论(0编辑  收藏  举报