MapReduce的原理及执行过程
MapReduce简介
- MapReduce是一种分布式计算模型,是Google提出的,主要用于搜索领域,解决海量数据的计算问题。
- MR有两个阶段组成:Map和Reduce,用户只需实现map()和reduce()两个函数,即可实现分布式计算。
MapReduce执行流程
MapReduce原理
MapReduce的执行步骤:
1、Map任务处理
1.1 读取HDFS中的文件。每一行解析成一个<k,v>。每一个键值对调用一次map函数。 <0,hello you> <10,hello me>
1.2 覆盖map(),接收1.1产生的<k,v>,进行处理,转换为新的<k,v>输出。 <hello,1> <you,1> <hello,1> <me,1>
1.3 对1.2输出的<k,v>进行分区。默认分为一个区。详见《Partitioner》
1.4 对不同分区中的数据进行排序(按照k)、分组。分组指的是相同key的value放到一个集合中。 排序后:<hello,1> <hello,1> <me,1> <you,1> 分组后:<hello,{1,1}><me,{1}><you,{1}>
1.5 (可选)对分组后的数据进行归约。详见《Combiner》
2、Reduce任务处理
2.1 多个map任务的输出,按照不同的分区,通过网络copy到不同的reduce节点上。(shuffle)详见《shuffle过程分析》
2.2 对多个map的输出进行合并、排序。覆盖reduce函数,接收的是分组后的数据,实现自己的业务逻辑, <hello,2> <me,1> <you,1>
处理后,产生新的<k,v>输出。
2.3 对reduce输出的<k,v>写到HDFS中。
Java代码实现
注:要导入org.apache.hadoop.fs.FileUtil.java。
1、先创建一个hello文件,上传到HDFS中
2、然后再编写代码,实现文件中的单词个数统计(代码中被注释掉的代码,是可以省略的,不省略也行)
1 package mapreduce; 2 3 import java.net.URI; 4 import org.apache.hadoop.conf.Configuration; 5 import org.apache.hadoop.fs.FileSystem; 6 import org.apache.hadoop.fs.Path; 7 import org.apache.hadoop.io.LongWritable; 8 import org.apache.hadoop.io.Text; 9 import org.apache.hadoop.mapreduce.Job; 10 import org.apache.hadoop.mapreduce.Mapper; 11 import org.apache.hadoop.mapreduce.Reducer; 12 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; 13 import org.apache.hadoop.mapreduce.lib.input.TextInputFormat; 14 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; 15 import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat; 16 17 public class WordCountApp { 18 static final String INPUT_PATH = "hdfs://chaoren:9000/hello"; 19 static final String OUT_PATH = "hdfs://chaoren:9000/out"; 20 21 public static void main(String[] args) throws Exception { 22 Configuration conf = new Configuration(); 23 FileSystem fileSystem = FileSystem.get(new URI(INPUT_PATH), conf); 24 Path outPath = new Path(OUT_PATH); 25 if (fileSystem.exists(outPath)) { 26 fileSystem.delete(outPath, true); 27 } 28 29 Job job = new Job(conf, WordCountApp.class.getSimpleName()); 30 31 // 1.1指定读取的文件位于哪里 32 FileInputFormat.setInputPaths(job, INPUT_PATH); 33 // 指定如何对输入的文件进行格式化,把输入文件每一行解析成键值对 34 //job.setInputFormatClass(TextInputFormat.class); 35 36 // 1.2指定自定义的map类 37 job.setMapperClass(MyMapper.class); 38 // map输出的<k,v>类型。如果<k3,v3>的类型与<k2,v2>类型一致,则可以省略 39 //job.setOutputKeyClass(Text.class); 40 //job.setOutputValueClass(LongWritable.class); 41 42 // 1.3分区 43 //job.setPartitionerClass(org.apache.hadoop.mapreduce.lib.partition.HashPartitioner.class); 44 // 有一个reduce任务运行 45 //job.setNumReduceTasks(1); 46 47 // 1.4排序、分组 48 49 // 1.5归约 50 51 // 2.2指定自定义reduce类 52 job.setReducerClass(MyReducer.class); 53 // 指定reduce的输出类型 54 job.setOutputKeyClass(Text.class); 55 job.setOutputValueClass(LongWritable.class); 56 57 // 2.3指定写出到哪里 58 FileOutputFormat.setOutputPath(job, outPath); 59 // 指定输出文件的格式化类 60 //job.setOutputFormatClass(TextOutputFormat.class); 61 62 // 把job提交给jobtracker运行 63 job.waitForCompletion(true); 64 } 65 66 /** 67 * 68 * KEYIN 即K1 表示行的偏移量 69 * VALUEIN 即V1 表示行文本内容 70 * KEYOUT 即K2 表示行中出现的单词 71 * VALUEOUT 即V2 表示行中出现的单词的次数,固定值1 72 * 73 */ 74 static class MyMapper extends 75 Mapper<LongWritable, Text, Text, LongWritable> { 76 protected void map(LongWritable k1, Text v1, Context context) 77 throws java.io.IOException, InterruptedException { 78 String[] splited = v1.toString().split("\t"); 79 for (String word : splited) { 80 context.write(new Text(word), new LongWritable(1)); 81 } 82 }; 83 } 84 85 /** 86 * KEYIN 即K2 表示行中出现的单词 87 * VALUEIN 即V2 表示出现的单词的次数 88 * KEYOUT 即K3 表示行中出现的不同单词 89 * VALUEOUT 即V3 表示行中出现的不同单词的总次数 90 */ 91 static class MyReducer extends 92 Reducer<Text, LongWritable, Text, LongWritable> { 93 protected void reduce(Text k2, java.lang.Iterable<LongWritable> v2s, 94 Context ctx) throws java.io.IOException, 95 InterruptedException { 96 long times = 0L; 97 for (LongWritable count : v2s) { 98 times += count.get(); 99 } 100 ctx.write(k2, new LongWritable(times)); 101 }; 102 } 103 }
3、运行成功后,可以在Linux中查看操作的结果