线性空间
线性空间
用F表示实数全体(R)或者复数全体(C)
定义: 设V是非零空集合,F是R或者C的数域,在V和F上定义两种运算:
加法运算:对 \(\alpha,\beta \in\) V,在V中有唯一的元素与其和对应,我们记此元素为\(\alpha+ \beta\),称为\(\alpha,\beta\)的和;
数乘运算:对于\(\forall \alpha \in V, k\in F\),在V中有唯一的元素与之对应,记这个元素为\(k\alpha\),称为\(k\)与\(\alpha\)的积;
如果V满足下述公理,则称V是数域F上的线性空间,V中的元素称为向量:
- 对于\(\forall \alpha,\beta \in V,\alpha + \beta = \beta + \alpha\);(加法交换律)
- 对于\(\forall \alpha,\beta,\gamma \in V,(\alpha+\beta)+\gamma=\alpha+(\beta+\gamma)\);(加法结合律)
- \(\exists \theta \in V\),使得\(\alpha \in V,\alpha + \theta = \alpha\);(我们称这样\(\theta\)为零向量)
- 对\(\forall \alpha \in V,\beta \in V\),使得 \(\alpha + \beta = \theta\);(这样的\(\beta\)称为\(\alpha\)的负元素
- 对于\(\forall \in V, 1\alpha = \alpha\);
- 对\(\forall \alpha \in V,k l \in F,k (l\alpha)=(kl)\alpha\);
- 对\(\forall \in V,k l \in F,(k+l) \alpha = k\alpha + l\alpha\);
- 对\(\forall \alpha \beta \in V,k \in F,k(\alpha + \beta) = k\alpha + k\beta\);
线性空间的例子
例1. \(V=F^{n}\)
例2. \(V=F^{n\times n}\)
例3. \(V=F[x]\)
例4. \(V=F_{n}[x]={p(x)|p(x)的次数 <n 或者 p(x)=0}\)
例5. \(V=F,F=R\)
例6. \(V=C,F=C\)
例7. \(V=R,F=C\)
对于这个例子,通常情况下,V中的实数相加结果还在V中,但C中的复数和V中的实数相乘就不再V的空间了,所以V不是线性空间.
例8. \(V=R^{+},F=R\)
通常情况下,这个显然也不是线性空间.但是我们重新定义V的加法和数乘,可使之仍然为线性空间.
定义加法(\(\bigoplus\))运算:
\(\alpha \bigoplus \beta= \alpha\beta\)
定义乘法(\(\cdot\))运算:
\(\forall \alpha \in V,k \in F,k \cdot \alpha = \alpha^{k}\)
对这个系统我们测试上面的2的定义和8个公理:
显然,V对其定义的加法运算和数乘运输封闭;
再来验证8个公理:
对公理1,2显然成立,
对公理3,\(\alpha \bigoplus \theta = \alpha \theta = \alpha\)
所以这个系统的的零向量\(\theta = 1\)(实数1)
对于公理4,需要使得 \(\alpha + \beta = 1\) , 所以 $\alpha \beta $互为倒数即可
对于公理5,$1\alpha = \alpha^{1} = \alpha $ 成立
对于公理6,左边 = \(k(l\alpha)= \alpha^{lk}\),右边 = \((kl)\alpha = \alpha^{kl}\) = 左边 ,成立
对于公理7,左边 = \((k \bigoplus l)\alpha = \alpha^{k \bigoplus l}\) = \(\alpha^{kl}\),
右边 = \(k\alpha + l\alpha =\alpha^{k} \bigoplus \alpha^{l} = \alpha^{k}\alpha^{l} = \alpha^{kl} =\) 左边 ;
对于公理8,左边 = \((\alpha\beta)^{k}\),
右边\(=\alpha^{k} \bigoplus \beta^{k} = (\alpha\beta)^{k}=\) 左边;
综上,对V重新定义了加法和数乘运算后,V为线性空间.
线性空间的性质
设 V是数域 F的线性空间,则
性质1. V中零向量(\(\theta\))是唯一的.
proof: 不妨设\(\theta_{1} \theta_{2}\) 都V中的不同的零向量
由公理1,3可得:
所以, \(\theta_{1} = \theta_{2}\)
性质2. 对\(\forall \alpha \in V, \alpha\)的负元素是唯一的,记为(\(-\alpha\))
proof: 设\(\beta_{1} \beta_{2}\) 均是\(\alpha\) 的负元素
由公理1,2,3,4
所以,\(\alpha\) 的负元素唯一.
性质3. 加法消去律: 若 \(\alpha + \beta = \alpha + \gamma \Rightarrow\)\beta = \gamma$
proof: \(-\alpha + \alpha +\beta = -\alpha +\alpha +\gamma\)
\(\Rightarrow \theta+\beta = \theta +\gamma\)
\(\Rightarrow \beta=\gamma\)
性质4. \(\forall \alpha \beta \in V\),向量方程 \(\alpha + x =\beta\)有唯一解,\(x=\beta - \alpha\).
proof:
\(-\alpha + \alpha + x =-\alpha +\beta\)
\(\Rightarrow \theta+x =\beta - \alpha\)
性质5. \((-k)\alpha = -(k\alpha)\) 特别地,\((-1)\alpha= -\alpha\)
性质6. \(k\alpha=\theta \Leftrightarrow k=0\)(实数0) 或者 \(\alpha =\theta\)
基、坐标、维数
线性代数中的一些重要结论
结论1
若 \(s\ge 2\),则\(\alpha_{1},\alpha_{2},...\alpha_{s}\)线性相关\(\Leftrightarrow \exists \alpha_{j}\),其可由其余\(s-1\)个向量线性表示.
结论2
若\(\alpha_{1},\alpha_{2},...,\alpha_{s}\)线性无关, 而\(\beta,\alpha_{1},\alpha_{2},...\alpha_{s}\)线性相关,
则\(\beta\)可由\(\alpha_{1},\alpha_{2},...,\alpha_{s}\)唯一线性表示.
proof1 :从解线性方程组的角度:
记矩阵\(A=\alpha_{1},\alpha_{2},...,\alpha_{s}\),则\(Ax=\beta\)
则增广矩阵\(B=(A,\beta)=(\alpha_{1},\alpha_{2},...,\alpha_{s},\beta)\)
rank(A)=rank(B)=s,方程有唯一解x.
proof2.从向量空间的角度分析:
向量\(\alpha_{1},\alpha_{2},...,\alpha_{s}\)可生成一个向量空间V
由\(\alpha_{1},\alpha_{2},...,\alpha_{s}\)线性无关, 而\(\beta,\alpha_{1},\alpha_{2},...\alpha_{s}\)线性相关
可得,\(\beta\)必然也在空间V中,则\(\beta\)一定可以由\(\alpha_{1},\alpha_{2},...,\alpha_{s}\)线性表示.
不妨设
其中 \(k_{i}\) 与 \(x_{j}\) 不全相同,\((i,j=1,2,...s)\)
则(1)-(2)
由\(\alpha_{1},\alpha_{2},...,\alpha_{s}\)线性无关,必然\(x_{i}-k_{i}=0, i=1,2,...s\),所以唯一表示.
结论3
若\(t>s,\beta_{1},\beta_{2},...\beta_{t}\)可由\(\alpha_{1},\alpha_{2},...,\alpha_{s}\)线性表示,
则\(\beta_{1},\beta_{2},...\beta_{t}\)线性相关.
proof1: 从向量空间的角度分析,反证法证之.
假设\(\beta_{1},\beta_{2},...\beta_{t}\)线性无关.
因为\(\beta_{i}\)都可由\(\alpha_{1},\alpha_{2},...,\alpha_{s}\)线性表示,其中\(i=1,2,...t\)
所以\(\beta_{i}\)都在 \(span(\alpha_{1},\alpha_{2},...\alpha_{s})\),其中 \(i=1,2,...t\)
又\(\because \beta_{1},\beta_{2},...\beta_{t}\)线性无关
因此\(dim\ span(\alpha_{1},\alpha_{2},...\alpha_{s}) \ge t\)
由于 \(dim \ span(\alpha_{1},\alpha_{2},...\alpha_{s}) \le s <t\)
所以,假设不成立.\((\beta_{1},\beta_{2},...\beta_{t})\)线性相关
推论1
若\(\beta_{1},\beta_{2},...\beta_{t}\)可由\(\alpha_{1},\alpha_{2},...\alpha_{s}\)线性表示,
且\(\beta_{1},\beta_{2},...\beta_{t}\) 线性无关,则\(t\le s\)
推论2
若\(\beta_{1},\beta_{2},...\beta_{t}\)与\(\alpha_{1},\alpha_{2},...\alpha_{s}\)等价,且均线性无关,则\(s = t\)
下面提供两个推论的简单证明
对推论1,我们从矩阵和秩的关系出发证明:
不妨设 矩阵\(B=(\beta_{1},\beta_{2},...\beta_{t})\),矩阵\(A=(\alpha_{1},\alpha_{2},...\alpha_{s})\),
又因为\(\beta_{1},\beta_{2},...\beta_{t}\)可由\(\alpha_{1},\alpha_{2},...\alpha_{s}\)线性表示,
则存在一矩阵\(X_{s\times n}\),使得B=AX
又\(\because \beta_{1},\beta_{2},...\beta_{t}\) 线性无关
\(\therefore t=rank(B)<rank(A) \le s\)
对于推论2的证明,我们利用推论1:
综上:\(t=s\)