pandas introduction
原创转载请注明出处:https://www.cnblogs.com/agilestyle/p/12249687.html
Introduction
pandas is a fast, powerful, flexible and easy to use open source data analysis and manipulation tool, built on top of the Python programming language.
pandas contains data structures and data manipulation tools designed to make data cleaning and analysis fast and easy in Python. pandas is often used in tandem with numerical computing tools like NumPy and SciPy, analytical libraries like statsmodels and scikit-learn, and data visualization libraries like matplotlib. pandas adopts significant parts of NumPy’s idiomatic style of array-based computing, especially array-based functions and a preference for data processing without for loops.
While pandas adopts many coding idioms from NumPy, the biggest difference is that pandas is designed for working with tabular or heterogeneous data. NumPy, by contrast, is best suited for working with homogeneous numerical array data.
Since becoming an open source project in 2010, pandas has matured into a quite large library that’s applicable in a broad set of real-world use cases. The developer community has grown to over 800 distinct contributors, who’ve been helping build the project as they’ve used it to solve their day-to-day data problems.
Reference
Python for Data Analysis Second Edition
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】博客园社区专享云产品让利特惠,阿里云新客6.5折上折
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步