筛法求素数

...

  一般求素数都是暴力求解,这样效率不高,今天就总结一下筛法求素数,这是一种较高效的算法,具体如下:

用筛法求素数的基本思想是:把从1开始的、某一范围内的正整数从小到大顺序排列, 1不是素数,首先把它筛掉。剩下的数中选择最小的数是素数,然后去掉它的倍数。依次类推,直到筛子为空时结束。

用筛法求素数的基本思想是:把从1开始的、某一范围内的正整数从小到大顺序排列, 1不是素数,首先把它筛掉。剩下的数中选择最小的数是素数,然后去掉它的倍数。依次类推,直到筛子为空时结束。如有:

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

1不是素数,去掉。剩下的数中2最小,是素数,去掉2的倍数,余下的数是:

3 5 7 9 11 13 15 17 19 21 23 25 27 29

剩下的数中3最小,是素数,去掉3的倍数,如此下去直到所有的数都被筛完,求出的素数为:

2 3 5 7 11 13 17 19 23 29

 

附上代码:

#include<stdio.h>
int main()
{
	int i, j, a[1000];
	a[0] = 0; a[1] = 0;
	for (i = 2; i < 1000; i++)
		a[i] = 1;            //从2开始初值赋1,相当于true
	for (i = 2; i < 1000; i++)
	{
		if (a[i])
			for (j = i * 2; j < 1000; j += i)
				a[j] = 0;    //标记置0
	}
}

下面的可以在线性时间内筛选

void Prime2() {
    memset(a, 0, n*sizeof a[0]);
    int num = 0, i, j;
    for(i = 2; i < n; ++i) {
        if(!(a[i])) p[num++] = i;
        for(j = 0; (j<num && i*p[j]<n); ++j) {
            a[i*p[j]] = 1;
            if(!(i%p[j])) break;
        }
    }
}

然而发现还是有很多重复的,解决这个问题的诀窍是如何安排删除的次序,使得每一个非质数都只被删除一次。 中学时学过一个因式分解定理,他说任何一个非质(合)数都可以分解成质数的连乘积。例如,16=2^4,18=2 * 3^2,691488=2^5 * 3^2 * 7^4等。如果把因式分解中最小质数写在最左边,有16=4^2,18=2*9,691488=2^5 * 21609,;换句话说,把合数N写成N=p^k * q,此时q当然是大于p的,因为p是因式分解中最小的质数。由于因式分解的唯一性,任何一个合数N,写成N=p^k * q;的方式也是唯一的。 由于q>=p的关系,因此在删除非质数时,如果已知p是质数,可以先删除p^2,p^3,p^4,... ,再删除pq,p^2*q,p^3*q,...,(q是比p大而没有被删除的数),一直到pq>N为止。

因为每个非质数都只被删除一次,可想而知,这个程序的速度一定相当快。依据Gries与Misra的文章,线性的时间,也就是与N成正比的时间就足够了(此时要找出2N的质数)。 (摘自《C语言名题精选百则(技巧篇)》,冼镜光 编著,机械工业出版社,2005年7月第一版第一次印刷)。代码如下:

#include<iostream>
#include<cmath>
using namespace std;
int main()
{
    int N; cin>>N;
    int *Location=new int[N+1];
    for(int i=0;i!=N+1;++i)
        Location[i]=i;
    Location[1]=0; //筛除部分 
    int p,q,end;
    end=sqrt((double)N)+1;
    for(p=2;p!=end;++p)
    {
        if(Location[p])
        {
            for(q=p;p*q<=N;++q)
            {
                for(int k=p*q;k<=N;k*=p)
                    Location[k]=0;
            }
        }
    }
    int m=0;
    for(int i=1;i!=N+1;++i)
    {
        if(Location[i]!=0)
        {
            cout<<Location[i]<<" ";
            ++m;
        }
        if(m%10==0) cout<<endl;
    }
    cout<<endl<<m<<endl;
    return 0;
}

 

 

posted @ 2018-06-09 15:07  浮生惘语  阅读(228)  评论(0编辑  收藏  举报