51nod1079 中国剩余定理【数论】

一个正整数K,给出K Mod 一些质数的结果,求符合条件的最小的K。例如,K % 2 = 1, K % 3 = 2, K % 5 = 3。符合条件的最小的K = 23。

Input

第1行:1个数N表示后面输入的质数及模的数量。(2 <= N <= 10)
第2 - N + 1行,每行2个数P和M,中间用空格分隔,P是质数,M是K % P的结果。(2 <= P <= 100, 0 <= K < P)

Output

输出符合条件的最小的K。数据中所有K均小于10^9。

Input示例

3
2 1
3 2
5 3

Output示例

23

思路:一道模板题,注意要开longlong,不然会爆。之前写过中国剩余定理的博客点击打开链接

#include<cstdio>
#include <iostream>
using namespace std;
int a1[15],m[15];
int exgcd(int a,int b,int &x,int &y){
    if (b==0){
        x=1,y=0;
        return a;
    }
    int q=exgcd(b,a%b,y,x);
    y-=a/b*x;
    return q;
}
int CRT(int n)
{
    int M = 1;
    int ans = 0;
    for(int i=0; i<n; i++)
        M *= m[i];
    for(int i=0; i<n; i++)
    {
        int x, y;
        int Mi = M / m[i];
        exgcd(Mi, m[i], x, y);      //扩展欧几里得
        ans = (ans + Mi * x * a1[i]) % M;    //x是对应的乘法逆元,a[i]是余数
    }
    return (ans+M)%M;
}

int main()
{
    int n;
    scanf("%d",&n);
    for(int i=0;i<n;++i)
        scanf("%d%d",&m[i],&a1[i]);
    int k=CRT(n);
    printf("%d\n",k);
    return 0;
}

 

posted @ 2018-09-27 15:35  浮生惘语  阅读(134)  评论(0编辑  收藏  举报