矩阵快速幂及斐波那契数列模板

本篇博客先给出矩阵快速幂以及利用矩阵快速幂求斐波那契数列的模板,讲解待更新…… 

const int N=10;
int tmp[N][N];
void multi(int a[][N],int b[][N],int n)
{
    memset(tmp,0,sizeof tmp);
    for(int i=0;i<n;i++)
        for(int j=0;j<n;j++)
        for(int k=0;k<n;k++)
        tmp[i][j]+=a[i][k]*b[k][j];
    for(int i=0;i<n;i++)
        for(int j=0;j<n;j++)
        a[i][j]=tmp[i][j];
}
int res[N][N];
void Pow(int a[][N],int n)
{
    memset(res,0,sizeof res);//n是幂,N是矩阵大小
    for(int i=0;i<N;i++) res[i][i]=1;
    while(n)
    {
        if(n&1)
            multi(res,a,N);//res=res*a;复制直接在multi里面实现了;
        multi(a,a,N);//a=a*a
        n>>=1;
    }
}
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=2;
const int MOD=1000000009;
struct mat
{
    ll a[N][N];
};
mat mat_mul(mat x,mat y)
{
    mat res;
    memset(res.a,0,sizeof(res.a));
    for(int i=0;i<2;i++)
        for(int j=0;j<2;j++)
        for(int k=0;k<2;k++)
        res.a[i][j]=(res.a[i][j]+x.a[i][k]*y.a[k][j])%MOD;
    return res;
}
void mat_pow(ll n)
{
    mat c,res;
    c.a[0][0]=c.a[0][1]=c.a[1][0]=1;
    c.a[1][1]=0;
    memset(res.a,0,sizeof(res.a));
    for(int i=0;i<2;i++) res.a[i][i]=1;
    while(n)
    {
        if(n&1) res=mat_mul(res,c);
        c=mat_mul(c,c);
        n=n>>1;
    }
    printf("%I64d\n",res.a[0][1]);
}
int main()
{
    ll n;
    scanf("%lld",&n);
    mat_pow(n);
    return 0;
}

 

posted @ 2018-10-20 10:15  浮生惘语  阅读(200)  评论(0编辑  收藏  举报