tensorflow 模型前向传播 保存ckpt tensorbard查看 ckpt转pb pb 转snpe dlc 实例

参考:

TensorFlow 自定义模型导出:将 .ckpt 格式转化为 .pb 格式

TensorFlow 模型保存与恢复

snpe

 

tensorflow 模型前向传播 保存ckpt  tensorbard查看 ckpt转pb  pb 转snpe dlc 实例

 

log文件

 

 

 

 

输入节点 图像高度 图像宽度 图像通道数

input0 6,6,3

输出节点

 --out_node add 

snpe-tensorflow-to-dlc --graph ./simple_snpe_log/model200.pb -i input0 6,6,3 --out_node add

 

 

 

#coding:utf-8
#http://blog.csdn.net/zhuiqiuk/article/details/53376283
#http://blog.csdn.net/gan_player/article/details/77586489
from __future__ import absolute_import, unicode_literals
import tensorflow as tf
import shutil
import os.path
from tensorflow.python.framework import graph_util
import mxnet as mx
import numpy as np
import random
import cv2
from time import sleep
from easydict import EasyDict as edict
import logging   
import math
import tensorflow as tf
import numpy as np

def FullyConnected(input, fc_weight, fc_bias, name):
    fc = tf.matmul(input, fc_weight) + fc_bias
    return fc

def inference(body, name_class,outchannel): 
    wkernel = 3
    inchannel = body.get_shape()[3].value
    conv_weight = np.arange(wkernel * wkernel * inchannel * outchannel,dtype=np.float32).reshape((outchannel,inchannel,wkernel,wkernel))
    conv_weight =  conv_weight / (outchannel*inchannel*wkernel*wkernel)
    print("conv_weight ", conv_weight)
    conv_weight = conv_weight.transpose(2,3,1,0)
    conv_weight = tf.Variable(conv_weight, dtype=np.float32, name = "conv_weight")
    body = tf.nn.conv2d(body, conv_weight, strides=[1, 1, 1, 1], padding='SAME', name = "conv0")
    conv = body
    conv_shape = body.get_shape()
    dim = conv_shape[1].value * conv_shape[2].value * conv_shape[3].value 
    body = tf.reshape(body, [1, dim], name = "fc0")
    fc_weight = np.ones((dim, name_class))
    fc_bias = np.zeros((1, name_class))
    fc_weight = tf.Variable(fc_weight, dtype=np.float32, name="fc_weight")
    fc_bias = tf.Variable(fc_bias, dtype=np.float32, name="fc_bias")
    # tf.constant(100,dtype=np.float32, shape=(body.get_shape()[1] * body.get_shape()[2]  * body.get_shape()[3], name_class])
    # fc_bias = tf.constant(10, dtype=np.float32, shape=(1, name_class])
    body = FullyConnected(body, fc_weight, fc_bias, "fc0")
    return conv, body

export_dir = "simple_snpe_log"
def saveckpt():
    height = 6
    width = 6
    inchannel = 3
    outchannel = 3
    graph = tf.get_default_graph()
    with tf.Graph().as_default():
        input_image = tf.placeholder("float", [1, height, width, inchannel], name = "input0")
        conv, logdit = inference(input_image,10,outchannel)
        init = tf.global_variables_initializer()
        with tf.Session() as sess:
            sess.run(init)
            img = np.arange(height * width * inchannel, dtype=np.float32).reshape((1,inchannel,height,width)) \
                  / (1 * inchannel * height * width) * 255.0 - 127.5
            print("img",img)
            img = img.transpose(0,2,3,1)
            import time 
            since = time.time()
            fc = sess.run(logdit,{input_image:img})
            conv = sess.run(conv, {input_image: img})
            time_elapsed = time.time() - since
            print("tf inference time ", str(time_elapsed))
            print("conv", conv.transpose(0, 2, 3, 1))
            print("fc", fc)
            #np.savetxt("tfconv.txt",fc) 
            #print( "fc", fc.transpose(0,3,2,1))
            #np.savetxt("tfrelu.txt",fc.transpose(0,3,2,1)[0][0]) 

            # #save ckpt
            export_dir = "simple_snpe_log"
            saver = tf.train.Saver()
            step = 200
            # if os.path.exists(export_dir):
            #     os.system("rm -rf " + export_dir)
            if not os.path.isdir(export_dir): # Create the log directory if it doesn't exist
                os.makedirs(export_dir)

            checkpoint_file = os.path.join(export_dir, 'model.ckpt')
            saver.save(sess, checkpoint_file, global_step=step)

def LoadModelToTensorBoard():
    graph = tf.get_default_graph()
    checkpoint_file = os.path.join(export_dir, 'model.ckpt-200.meta')
    saver = tf.train.import_meta_graph(checkpoint_file)
    print(saver)
    summary_write = tf.summary.FileWriter(export_dir , graph)
    print(summary_write)

def ckptToPb():
    checkpoint_file = os.path.join(export_dir, 'model.ckpt-200.meta')
    ckpt = tf.train.get_checkpoint_state(export_dir)
    print("model ", ckpt.model_checkpoint_path)
    saver = tf.train.import_meta_graph(ckpt.model_checkpoint_path +'.meta')
    graph = tf.get_default_graph()
    with tf.Session() as sess:
        saver.restore(sess,ckpt.model_checkpoint_path)
        height = 6
        width = 6
        input_image = tf.get_default_graph().get_tensor_by_name("input0:0")
        fc0_output = tf.get_default_graph().get_tensor_by_name("add:0")
        sess.run(tf.global_variables_initializer())
        output_graph_def = tf.graph_util.convert_variables_to_constants(
            sess, graph.as_graph_def(), ['add'])
        model_name = os.path.join(export_dir, 'model200.pb')
        with tf.gfile.GFile(model_name, "wb") as f:  
            f.write(output_graph_def.SerializeToString()) 

def PbTest():
    with tf.Graph().as_default():
        output_graph_def = tf.GraphDef()
        output_graph_path = os.path.join(export_dir,'model200.pb')
        with open(output_graph_path, "rb") as f:
            output_graph_def.ParseFromString(f.read())
            tf.import_graph_def(output_graph_def, name="")

        with tf.Session() as sess:
            tf.initialize_all_variables().run()
            height = 6
            width = 6
            inchannel = 3
            outchannel = 3
            input_image = tf.get_default_graph().get_tensor_by_name("input0:0")
            fc0_output = tf.get_default_graph().get_tensor_by_name("add:0")
            conv = tf.get_default_graph().get_tensor_by_name("conv0:0")

            img = np.arange(height * width * inchannel, dtype=np.float32).reshape((1,inchannel,height,width)) \
                  / (1 * inchannel * height * width) * 255.0 - 127.5
            print("img",img)
            img = img.transpose(0,2,3,1)
            import time 
            since = time.time()
            fc0_output = sess.run(fc0_output,{input_image:img})
            conv = sess.run(conv, {input_image: img})
            time_elapsed = time.time() - since
            print("tf inference time ", str(time_elapsed))
            print("conv", conv.transpose(0, 2, 3, 1))
            print("fc0_output", fc0_output)

if __name__ == '__main__':

    saveckpt() #1
    LoadModelToTensorBoard()#2 
    ckptToPb()#3
    PbTest()#4

 

posted on 2018-06-29 09:31  Maddock  阅读(1728)  评论(0编辑  收藏  举报

导航