⑦SpringCloud 实战:引入Sleuth组件,完善服务链路跟踪

这是SpringCloud实战系列中第7篇文章,了解前面第两篇文章更有助于更好理解本文内容:
①SpringCloud 实战:引入Eureka组件,完善服务治理
②SpringCloud 实战:引入Feign组件,发起服务间调用
③SpringCloud 实战:使用 Ribbon 客户端负载均衡
④SpringCloud 实战:引入Hystrix组件,分布式系统容错](https://jingling.im/archives/hystrix)
⑤SpringCloud 实战:引入Zuul组件,开启网关路由
⑥SpringCloud 实战:引入gateway组件,开启网关路由功能

背景

近年来,随着微服务架构的流行,很多公司都走上了微服务拆分之路。从而使系统变得越来越复杂,原本单体的系统被拆成很多个服务,每个服务之间通过轻量级的 HTTP 协议进行交互。

单体架构时,一个请求的调用链路非常清晰,一般由负载均衡器,比如 Nginx。将调用方的请求转发到后端服务,后端服务进行业务处理后返回给调用方。而当架构变成微服务架构时,可能带来一系列的问题,比如下面三个问题:

  1. 接口响应慢,怎么排查?
  2. 服务间的依赖关系如何查看?
  3. 请求贯穿多个微服务,如何将每个请求的日志串起来?

分布式链路跟踪

分布式链路跟踪原理在于如何能将请求经过的服务节点都关联起来。当一个请求从客户端到达网关后,相当于是第一个入口,这时就需要生成一个唯一的请求 ID,作为这次请求的标识。从网关到达服务 A 后,肯定是需要将请求 ID 传递到服务 A 中的,这样才能将网关到服务 A 的请求关联起来,依次类推,后面会经过多层服务,都需要将信息一层层传递。当然在每一层都需要将数据进行上报、统一存储、展示等操作。

从我们对这个需求的理解来看,链路跟踪并不是很复杂,而复杂的点在于如何实现这一套跟踪框架,就拿请求信息传递这件事来说,服务之间交互,有的用的是 Feign 调用接口,有的用的是 RestTemplate 调用接口,要想将信息传递到下游服务,那么必须得扩展这些调用的框架才可以。

1

核心概念

  • Span

    基本工作单元,例如,发送 RPC 请求是一个新的 Span,发送 HTTP 请求是一个新的 Span,内部方法调用也是一个新的 Span。

  • Trace

    一次分布式调用的链路信息,每次调用链路信息都会在请求入口处生成一个 TraceId

  • Annotation

    用于记录事件的信息。在 Annotation 中会有 CS、SR、SS、CR 这些信息,前面的C表示客户端,S表示服务器端; 后面的S表示sent,也就是发起请求时的动作,R表示Received,也就是接受到请求时的动作;下面分别介绍下这些信息的作用。

    • CS
      也就是 Client Sent,客户端发起一个请求,这个 Annotation 表示 Span 的开始。
    • CR
      也就是 Client Received,表示 Span 的结束,客户端已成功从服务器端收到响应,用 CR 的时间戳减去 CS 的时间戳就可以知道客户端从服务器接收响应所需的全部时间。
    • SS
      也就是 Server Sent,在请求处理完成时将响应发送回客户端,用 SS 的间戳减去 SR 的时间戳会显示服务器端处理请求所需的时间。
    • SR
      也就是 Server Received,服务器端获得请求并开始处理它,用 SR 的时间戳减去 CS 的时间戳会显示网络延迟时间。

请求追踪过程分解

2

  1. 首先当一个请求访问 SERVICE1 时,这时是没有 Trace 和 Span 的,然后会生成 Trace 和 Span,如图所示生成的 Trace ID 是 X,Span ID 是 A。
  2. 接着 SERVICE1 请求 SERVICE2,这是一次远程请求,会生成一个新的 Span,Span ID 为 B,Trace ID 不变还是 X。Span B 处于 CS 状态。
  3. 当请求到达 SERVICE2 后,Trade ID 和 Span ID 就被传递过来了,这时,SERVICE2 有内部操作,又生成了一个新的 Span,Span ID 为 C,Trace ID 不变还是 X。
  4. SERVICE2 处理完后向 SERVICE3 发起请求,同时产生新的 Span,Span ID 为 D,Span D 处于 CS 状态,SERVICE3 接收到请求后,Span D 处于 SR 状态,同时 SERVICE3 内部操作也会产生新的 Span,Span ID 为 E。
  5. 当 SERVICE3 处理完后,需要将结果响应给调用方,这时 Span D 就处于 SS 的状态,当 SERVICE2 收到响应后,Span ID 为 D 的 Span 就是 CR 状态,表示 Span 已经结束了。

Zipkin 介绍

ZipkinTwitter 的一个开源项目,是一个致力于收集所有服务监控数据的分布式跟踪系统,它提供了收集数据和查询数据两大接口服务。有了 Zipkin 我们就可以很直观地查看调用链,并且可能很方便看出服务之间的调用关系,以及调用耗费的时间。

Zipkin还提供了可插拔数据存储方式:In-Memory、MySql、Cassandra以及Elasticsearch。测试方便可直接采用In-Memory方式进行存储,生产推荐使用Elasticsearch。

安装 Zipkin

如果使用了 Java 8 或者更高的版本,可以获取最新的可执行 jar 包来进行启动。

  1. 下载jar包:

    curl -sSL https://zipkin.io/quickstart.sh | bash -s
    

    如果下载太慢,可以直接访问Maven地址进行下载最新的jar。

    其他方式安装,可以查看官网的quickstart

  2. 启动服务

    java -jar zipkin.jar
    
  3. 访问Zipkin

    成功启动服务后,访问http://127.0.0.1:9411/zipkin/即可。

    3

Sleuth 介绍

Spring Cloud Sleuth 是一种分布式的服务链路跟踪解决方案,通过使用 Spring Cloud Sleuth 可以让我们快速定位某个服务的问题,以及厘清服务间的依赖关系。

Sleuth 可以添加链路信息到日志中,这样的好处是可以统一将日志进行收集展示,并且可以根据链路的信息将日志进行串联。

Sleuth 中的链路数据可直接上报给 Zipkin,在 Zipkin 中就可以直接查看调用关系和每个服务的耗时情况.

Sleuth 中内置了很多框架的埋点,比如:Zuul、Feign、Hystrix、RestTemplate 等。正因为有了这些框架的埋点,链路信息才能一直往下传递。

通过 Http 结合Zipkin

  1. 在我们的微服务项目中添加Zipkin依赖

    <dependency> 
        <groupId>org.springframework.cloud</groupId>
        <artifactId>spring-cloud-starter-zipkin</artifactId>
    </dependency>
    
  2. 配置Zipkin地址

    spring.zipkin.base-url=http://127.0.0.1:9411/
    
  3. 配置采样比例
    实际使用中可能调用了 10 次接口,但是 Zipkin 中只有一条数据,这是因为收集信息是有一定比例的,Zipkin 中的数据条数与调用接口次数默认比例是 10:1,通过下面的配置来改变这个比例值:

    spring.sleuth.sampler.probability=1.0
    
  4. 验证
    启动我们的微服务,访问 http://localhost:9000/eureka-client/sayHello 接口,接口由网关路由到eureka-client 服务,eureka-client 服务再调用eureka-provider服务,接口返回eureka-provider服务的端口等信息。
    然后访问 http://127.0.0.1:9411/zipkin ,点击查询,即可查看到相关访问记录
    4

    点击菜单上面的依赖,可以查看项目的依赖关系

    5

使用 RabbitMQ or Kafka 代替 HTTP 发送调用链数据

数据的发送如果采用 HTTP 对性能还是有影响的。如果Zipkin 的服务端在重启或者挂掉时,那么将丢失部分采集数据。为了解决这些问题,我们可以集成 RabbitMQ 或者Kafka 来发送采集数据,利用消息队列来提高发送性能,保证数据不丢失;

  1. 如果要使用RabbitMQ或Kafka而不是HTTP,需要引入spring-rabbit or spring-kafka 相关依赖。

    <dependency> 
        <groupId>org.springframework.amqp</groupId>
        <artifactId>spring-rabbit</artifactId>
    </dependency>
    
  2. 然后在配置文件修改相关配置:

    # WEB、KAFKA、RABBIT、ACTIVEMQ
    spring.zipkin.sender.type=kafka
    
  3. 删除之前配置的 spring.zipkin.base-url

  4. 配置kafka、rabbit

自定义 Zipkin 配置

每个跟踪系统都需要具有Reporter <Span>Sender,如果要覆盖提供的bean,则需要给它们指定一个特定的名称 ZipkinAutoConfiguration.REPORTER_BEAN_NAME and ZipkinAutoConfiguration.SENDER_BEAN_NAME

下面是示例:

@Configuration
protected static class MyConfig {

    @Bean(ZipkinAutoConfiguration.REPORTER_BEAN_NAME)
    Reporter<zipkin2.Span> myReporter() {
        return AsyncReporter.create(mySender());
    }

    @Bean(ZipkinAutoConfiguration.SENDER_BEAN_NAME)
    MySender mySender() {
        return new MySender();
    }

    static class MySender extends Sender {

        private boolean spanSent = false;

        boolean isSpanSent() {
            return this.spanSent;
        }

        @Override
        public Encoding encoding() {
            return Encoding.JSON;
        }

        @Override
        public int messageMaxBytes() {
            return Integer.MAX_VALUE;
        }

        @Override
        public int messageSizeInBytes(List<byte[]> encodedSpans) {
            return encoding().listSizeInBytes(encodedSpans);
        }

        @Override
        public Call<Void> sendSpans(List<byte[]> encodedSpans) {
            this.spanSent = true;
            return Call.create(null);
        }

    }

}
posted @ 2020-12-21 13:58  Admol  阅读(771)  评论(0编辑  收藏  举报