flume+kafka+storm


centos06.6+JDK1.7

flume1.4+kafka2.10+storm0.9.3

zookeeper3.4.6


集群:

192.168.80.133 x01

192.168.80.134 x02


1.两台机器上设置hostname和hosts

。。。

2.两台机器上安装JDK并设置环境变量

3.下载安装zookeeper并设置环境变量

# example sakes.
dataDir=/data/zookeeper/data
# the port at which the clients will connect
clientPort=2181
# the maximum number of client connections.
# increase this if you need to handle more clients
#maxClientCnxns=60
#
# Be sure to read the maintenance section of the
# administrator guide before turning on autopurge.
#
# http://zookeeper.apache.org/doc/current/zookeeperAdmin.html#sc_maintenance
#
# The number of snapshots to retain in dataDir
#autopurge.snapRetainCount=3
# Purge task interval in hours
# Set to "0" to disable auto purge feature
#autopurge.purgeInterval=1

server.1=x01:2888:3888
server.2=x02:2888:3888
zkServer.sh start
zkserver.sh status

4.下载安装flume

 http://www.cnblogs.com/admln/p/flume.html

5.下载安装kafka

http://www.cnblogs.com/admln/p/kafka-install.html

6.整合flume和kafka

下载整合插件flumeng-kafka-plugin:https://github.com/beyondj2ee/flumeng-kafka-plugin

提取插件中的flume-conf.properties,修改后放到kafka的conf目录下

############################################
#  producer config
###########################################

#agent section
producer.sources = s
producer.channels = c
producer.sinks = r

#source section
producer.sources.s.type = spooldir
producer.sources.s.spoolDir=/home/hadoop/testFlume
producer.sources.s.fileHeader=false
producer.sources.s.channels = c

# Each sink's type must be defined
producer.sinks.r.type = org.apache.flume.plugins.KafkaSink
producer.sinks.r.metadata.broker.list=x01:9092
producer.sinks.r.partition.key=0
producer.sinks.r.partitioner.class=org.apache.flume.plugins.SinglePartition
producer.sinks.r.serializer.class=kafka.serializer.StringEncoder
producer.sinks.r.request.required.acks=0
producer.sinks.r.max.message.size=1000000
producer.sinks.r.producer.type=sync
producer.sinks.r.custom.encoding=UTF-8
producer.sinks.r.custom.topic.name=test

#Specify the channel the sink should use
producer.sinks.r.channel = c

# Each channel's type is defined.
producer.channels.c.type = memory
producer.channels.c.capacity = 1000

将Plugin中的jar包拷贝到flume的lib目录中

在/home/hadoop/testFlume中放入文件,在kafka中启用一个console的consumer来测试

bin/flume-ng agent -n producer -c conf -f conf/kafka.conf -Dflume.root.logger=DEBUG,console
bin/kafka-console-consumer.sh --zookeeper x01:2181 --topic test --from-beginning

测试成功

注意:如果让flume传输中文的话,文件编码最好是UTF-8,否则容易乱码导致flume死掉

7.安装storm

http://www.cnblogs.com/admln/p/storm-install.html

8.整合storm和kafka

将kafka的一些jar包复制到storm的lib目录中

cp kafka_2.10-0.8.1.1/libs/kafka_2.10-0.8.1.1.jar apache-storm-0.9.3/lib/
cp kafka_2.10-0.8.1.1/libs/scala-library-2.10.1.jar apache-storm-0.9.3/lib/
cp kafka_2.10-0.8.1.1/libs/metrics-core-2.2.0.jar apache-storm-0.9.3/lib/
cp kafka_2.10-0.8.1.1/libs/snappy-java-1.0.5.jar apache-storm-0.9.3/lib/
cp kafka_2.10-0.8.1.1/libs/zkclient-0.3.jar apache-storm-0.9.3/lib/
cp kafka_2.10-0.8.1.1/libs/log4j-1.2.15.jar apache-storm-0.9.3/lib/
cp kafka_2.10-0.8.1.1/libs/slf4j-api-1.7.2.jar apache-storm-0.9.3/lib/
cp kafka_2.10-0.8.1.1/libs/jopt-simple-3.2.jar apache-storm-0.9.3/lib/

把zookeeper的zookeeper-3.4.6.jar复制到storm的lib目录中

cp zookeeper-3.4.6/zookeeper-3.4.6.jar apache-storm-0.9.3/lib/

编写storm程序来测试

pom.xml

<dependencies>
    <dependency>
            <groupId>junit</groupId>
            <artifactId>junit</artifactId>
            <version>3.8.1</version>
            <scope>test</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.storm</groupId>
            <artifactId>storm-core</artifactId>
            <version>0.9.3</version>
        </dependency>
        <dependency>
            <groupId>org.apache.kafka</groupId>
            <artifactId>kafka_2.10</artifactId>
            <version>0.8.1.1</version>
            <exclusions>
                <exclusion>
                    <groupId>org.apache.zookeeper</groupId>
                    <artifactId>zookeeper</artifactId>
                </exclusion>
                <exclusion>
                    <groupId>log4j</groupId>
                    <artifactId>log4j</artifactId>
                </exclusion>
            </exclusions>
        </dependency>
  </dependencies>

spout

package org.admln.flume_kafka_storm;

import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Properties;

import kafka.consumer.ConsumerConfig;
import kafka.consumer.ConsumerIterator;
import kafka.consumer.KafkaStream;
import kafka.javaapi.consumer.ConsumerConnector;
import backtype.storm.spout.SpoutOutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.base.BaseRichSpout;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Values;

public class KafkaSpout extends BaseRichSpout {
    
    private static final long serialVersionUID = -9174998944310422274L;
    private SpoutOutputCollector collector;
    private ConsumerConnector consumer;
    private String topic;
 
    public KafkaSpout() {}
     
    public KafkaSpout(String topic) {
        this.topic = topic;
    }
 
    public void nextTuple() {    }
 
    public void open(Map conf, TopologyContext context, SpoutOutputCollector collector) {
        this.collector = collector;
    }
 
    public void ack(Object msgId) {    }
 
    public void activate() {         
        consumer =kafka.consumer.Consumer.createJavaConsumerConnector(createConsumerConfig()); 
        Map<String,Integer> topickMap = new HashMap<String, Integer>();  
        topickMap.put(topic, 1);  
 
        System.out.println("*********Results********topic:"+topic);  
 
        Map<String, List<KafkaStream<byte[],byte[]>>>  streamMap=consumer.createMessageStreams(topickMap);  
        KafkaStream<byte[],byte[]>stream = streamMap.get(topic).get(0);  
        ConsumerIterator<byte[],byte[]> it =stream.iterator();   
        while(it.hasNext()){  
             String value =new String(it.next().message());
             System.out.println("storm接收到来自kafka的消息------->" + value);
             collector.emit(new Values(value), value);
        }  
    }
     
    private static ConsumerConfig createConsumerConfig() {  
        Properties props = new Properties();  
        // 设置zookeeper的链接地址
        props.put("zookeeper.connect","x01:2181,x02:2181");  
        // 设置group id
        props.put("group.id", "1");  
        // kafka的group 消费记录是保存在zookeeper上的, 但这个信息在zookeeper上不是实时更新的, 需要有个间隔时间更新
        props.put("auto.commit.interval.ms", "1000");
        props.put("zookeeper.session.timeout.ms","10000");  
        return new ConsumerConfig(props);  
    }  
 
    public void close() {    }
 
    public void deactivate() {    }
 
    public void fail(Object msgId) {    }
 
    public void declareOutputFields(OutputFieldsDeclarer declarer) {
        declarer.declare(new Fields("word"));
    }
 
    public Map<String, Object> getComponentConfiguration() {
        System.out.println("getComponentConfiguration被调用");
        topic="test";
        return null;
    }
}

bolt(wordsplitter)

package org.admln.flume_kafka_storm;

import java.util.Map;

import backtype.storm.task.OutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.base.BaseRichBolt;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Tuple;
import backtype.storm.tuple.Values;

public class KafkaWordSplitterBolt extends BaseRichBolt {

    private static final long serialVersionUID = 886149197481637894L;
    private OutputCollector collector;
   
    public void prepare(Map stormConf, TopologyContext context,
              OutputCollector collector) {
         this.collector = collector;              
    }

    public void execute(Tuple input) {
         String line = input.getString(0);
         String[] words = line.split(",");
         for(String word : words) {
         //这里除了提交一个传向下个bolt的list集,还把tuple提交了,这是collector的emit方法之一,为了下面的ack错误恢复 collector.emit(input,
new Values(word, 1)); } collector.ack(input); } public void declareOutputFields(OutputFieldsDeclarer declarer) { declarer.declare(new Fields("word", "count")); } }

bolt(wordcount)

package org.admln.flume_kafka_storm;

import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Map.Entry;
import java.util.concurrent.atomic.AtomicInteger;

import backtype.storm.task.OutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.base.BaseRichBolt;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Tuple;

public class KafkaWordCounterBolt extends BaseRichBolt {
    private static final long serialVersionUID = 886149197481637894L;
    private OutputCollector collector;
    private Map<String, AtomicInteger> counterMap;

    public void prepare(Map stormConf, TopologyContext context,
            OutputCollector collector) {
        this.collector = collector;
        this.counterMap = new HashMap<String, AtomicInteger>();
    }

    public void execute(Tuple input) {
        String word = input.getString(0);
        int count = input.getInteger(1);
        AtomicInteger ai = this.counterMap.get(word);
        if (ai == null) {
            ai = new AtomicInteger();
            this.counterMap.put(word, ai);
        }
        ai.addAndGet(count);
        collector.ack(input);
    }

    public void cleanup() {
        Iterator<Entry<String, AtomicInteger>> iter = this.counterMap
                .entrySet().iterator();
        while (iter.hasNext()) {
            Entry<String, AtomicInteger> entry = iter.next();
            System.out.println(entry.getKey() + "\t:\t" + entry.getValue().get());
        }

    }

    public void declareOutputFields(OutputFieldsDeclarer declarer) {
        declarer.declare(new Fields("word", "count"));
    }
}

topology

package org.admln.flume_kafka_storm;

import java.util.HashMap;
import java.util.Map;

import backtype.storm.Config;
import backtype.storm.LocalCluster;
import backtype.storm.StormSubmitter;
import backtype.storm.generated.AlreadyAliveException;
import backtype.storm.generated.InvalidTopologyException;
import backtype.storm.topology.TopologyBuilder;
import backtype.storm.tuple.Fields;

public class KafkaTopology {

    public static void main(String[] args) throws AlreadyAliveException,
            InvalidTopologyException {
        TopologyBuilder builder = new TopologyBuilder();
        builder.setSpout("spout", new KafkaSpout(""), 1);
     //bolt1 是此bolt在这个图中的ID
     //2表示启用多少线程来运行,可以省略,省略的话则默认分配一个线程
builder.setBolt(
"bolt1", new KafkaWordSplitterBolt(), 2) .shuffleGrouping("spout"); builder.setBolt("bolt2", new KafkaWordCounterBolt(), 2).fieldsGrouping( "bolt1", new Fields("word")); String name = KafkaTopology.class.getSimpleName(); if (args != null && args.length > 0) { Config conf = new Config(); // 通过指定nimbus主机 conf.put(Config.NIMBUS_HOST, args[0]); conf.setNumWorkers(2); StormSubmitter.submitTopologyWithProgressBar(name, conf, builder.createTopology()); } else { Map conf = new HashMap(); conf.put(Config.TOPOLOGY_WORKERS, 1); conf.put(Config.TOPOLOGY_DEBUG, true); LocalCluster cluster = new LocalCluster(); cluster.submitTopology("my-flume-kafka-storm-topology-integration", conf, builder.createTopology()); } } }

可以直接在eclipse中本地运行也可以放到集群上运行

集群上

bin/storm jar flume-kafka-storm.jar org.admln.flume_kafka_storm.KafkaToplology x01

 

posted @ 2015-03-31 20:03  Daem0n  阅读(1085)  评论(0编辑  收藏  举报