最小生成树算法
正文
所谓最小生成树,就是在一个具有N个顶点的带权连通图G中,如果存在某个子图G',其包含了图G中的所有顶点和一部分边,且不形成回路,并且子图G'的各边权值之和最小,则称G'为图G的最小生成树。
由定义我们可得知最小生成树的三个性质:
• 最小生成树不能有回路。
• 最小生成树可能是一个,也可能是多个。
• 最小生成树边的个数等于顶点的个数减一。
本文将介绍两种最小生成树的算法,分别为克鲁斯卡尔算法(Kruskal Algorithm)和普利姆算法(Prim Algorithm)。
一、克鲁斯卡尔算法(Kruskal Algorithm)
克鲁斯卡尔算法的核心思想是:在带权连通图中,不断地在边集合中找到最小的边,如果该边满足得到最小生成树的条件,就将其构造,直到最后得到一颗最小生成树。
克鲁斯卡尔算法的执行步骤:
第一步:在带权连通图中,将边的权值排序;
第二步:判断是否需要选择这条边(此时图中的边已按权值从小到大排好序)。判断的依据是边的两个顶点是否已连通,如果连通则继续下一条;如果不连通,那么就选择使其连通。
第三步:循环第二步,直到图中所有的顶点都在同一个连通分量中,即得到最小生成树。
下面我用图示法来演示克鲁斯卡尔算法的工作流程,如下图:
首先,将图中所有的边排序(从小到大),我们将以此结果来选择。排序后各边按权值从小到大依次是:
HG < (CI=GF) < (AB=CF) < GI < (CD=HI) < (AH=BC) < DE < BH < DF
接下来,我们先选择HG边,将这两个点加入到已找到点的集合。这样图就变成了,如图
继续,这次选择边CI(当有两条边权值相等时,可随意选一条),此时需做判断。
判断法则:当将边CI加入到已找到边的集合中时,是否会形成回路?
1.如果没有形成回路,那么直接将其连通。此时,对于边的集合又要做一次判断:这两个点是否在已找到点的集合中出现过?
①.如果两个点都没有出现过,那么将这两个点都加入已找到点的集合中;
②.如果其中一个点在集合中出现过,那么将另一个没有出现过的点加入到集合中;
③.如果这两个点都出现过,则不用加入到集合中。
2.如果形成回路,不符合要求,直接进行下一次操作。
根据判断法则,不会形成回路,将点C和点I连通,并将点C和点I加入到集合中。如图:
继续,这次选择边GF,根据判断法则,不会形成回路,将点G和点F连通,并将点F加入到集合中。如图:
继续,这次选择边AB,根据判断法则,不会形成回路,将其连通,并将点A和点B加入到集合中。如图:
继续,这次选择边CF,根据判断法则,不会形成回路,将其连通,此时这两个点已经在集合中了,所以不用加入。如图:
继续,这次选择边GI,根据判断法则,会形成回路,如下图,直接进行下一次操作:
继续,这次选择边CD,根据判断法则,不会形成回路,将其连通,并将点D加入到集合中。如图:
继续,这次选择边HI,根据判断法则,会形成回路,直接进行下一次操作。
继续,这次选择边AH,根据判断法则,不会形成回路,将其连通,此时这两个点已经在集合中了,所以不用加入。
继续,这次选择边BC,根据判断法则,会形成回路,直接进行下一次操作。
继续,这次选择边DE,根据判断法则,不会形成回路,将其连通,并将点E加入到集合中。如图:
继续,这次选择边BH,根据法则,会形成回路,进行下一次操作。
最后选择边DF,根据法则,会形成回路,不将其连通,也不用加入到集合中。
好了,所有的边都遍历完成了,所有的顶点都在同一个连通分量中,我们得到了这颗最小生成树。
通过生成的过程可以看出,能否得到最小生成树的核心问题就是上面所描述的判断法则。
那么,我们如何用算法来描述判断法则呢?我认为只需要三个步骤即可:
⒈将某次操作选择的边XY的两个顶点X和Y和已找到点的集合作比较,如果
①这两个点都在已找到点的集合中,那么return 2;
②这两个点有一个在已找到点的集合中,那么return 1;
③这两个点都不在一找到点的集合中,那么return 0;
⒉当返回值为0或1时,可判定不会形成回路;
⒊当返回值为2时,判定能形成回路的依据是:假如能形成回路,设能形成回路的点的集合中有A,B,C,D四个点,那么以点A为起始点,绕环路一周后必能回到点A。如果能回到,则形成回路;如果不能,则不能形成回路。
#include<iostream> #include<algorithm> using namespace std; const int size = 128; int n; int father[size]; int rank[size]; //把每条边成为一个结构体,包括起点、终点和权值 typedef struct node { int val; int start; int end; }edge[SIZE * SIZE / 2]; //把每个元素初始化为一个集合 void make_set() { for(int i = 0; i < n; i ++){ father[i] = i; rank[i] = 1; } return ; } //查找一个元素所在的集合,即找到祖先 int find_set(int x) { if(x != father[x]){ father[x] = find_set(father[x]); } return father[x]; } //合并x,y所在的两个集合:利用Find_Set找到其中两个 //集合的祖先,将一个集合的祖先指向另一个集合的祖先。 void Union(int x, int y) { x = find_set(x); y = find_set(y); if(x == y){ return ; } if(rank[x] < rank[y]){ father[x] = find_set(y); } else{ if(rank[x] == rank[y]){ rank[x] ++; } father[y] = find_set(x); } return ; } bool cmp(pnode a, pnode b) { return a.val < b.val; } int kruskal(int n) //n为边的数量 { int sum = 0; make_set(); for(int i = 0; i < n; i ++){ //从权最小的边开始加进图中 if(find_set(edge[i].start) != find_set(edge[i].end)){ Union(edge[i].start, edge[i].end); sum += edge[i].val; } } return sum; } int main() { while(1){ scanf("%d", &n); if(n == 0){ break; } char x, y; int m, weight; int cnt = 0; for(int i = 0; i < n - 1; i ++){ cin >> x >> m; //scanf("%c %d", &x, &m); //printf("%c %d ", x, m); for(int j = 0; j < m; j ++){ cin >> y >> weight; //scanf("%c %d", &y, &weight); //printf("%c %d ", y, weight); edge[cnt].start = x - 'A'; edge[cnt].end = y - 'A'; edge[cnt].val = weight; cnt ++; } } sort(edge, edge + cnt, cmp); //对边按权从小到大排序 cout << kruskal(cnt) << endl; } }
二、普利姆算法(Prim Algorithm)
普利姆算法的核心步骤是:在带权连通图中,从图中某一顶点v开始,此时集合U={v},重复执行下述操作:在所有u∈U,w∈V-U的边(u,w)∈E中找到一条权值最小的边,将(u,w)这条边加入到已找到边的集合,并且将点w加入到集合U中,当U=V时,就找到了这颗最小生成树。
其实,由步骤我们就可以定义查找法则:在所有u∈U,w∈V-U的边(u,w)∈E中找到一条权值最小的边。
ok,知道了普利姆算法的核心步骤,下面我就用图示法来演示一下工作流程,如图:
首先,确定起始顶点。我以顶点A作为起始点。根据查找法则,与点A相邻的点有点B和点H,比较AB与AH,我们选择点B,如下图。并将点B加入到U中。
继续下一步,此时集合U中有{A,B}两个点,再分别以这两点为起始点,根据查找法则,找到边BC(当有多条边权值相等时,可选任意一条),如下图。并将点C加入到U中。
继续,此时集合U中有{A,B,C}三个点,根据查找法则,我们找到了符合要求的边CI,如下图。并将点I加入到U中。
继续,此时集合U中有{A,B,C,I}四个点,根绝查找法则,找到符合要求的边CF,如下图。并将点F加入到集合U中。
继续,依照查找法则我们找到边FG,如下图。并将点G加入到U中。
继续,依照查找法则我们找到边GH,如下图。并将点H加入到U中。
继续,依照查找法则我们找到边CD,如下图。并将点D加入到U中。
继续,依照查找法则我们找到边DE,如下图。并将点E加入到U中。
此时,满足U = V,即找到了这颗最小生成树。
附注:prim算法最小生成树的生成过程中,也有可能构成回路,需做判断。判断的方法和克鲁斯卡尔算法一样。
int prime(int cur) { int index; int sum = 0; memset(visit, false, sizeof(visit)); visit[cur] = true; for(int i = 0; i < m; i ++){ dist[i] = graph[cur][i]; } for(int i = 1; i < m; i ++){ int mincost = INF; for(int j = 0; j < m; j ++){ if(!visit[j] && dist[j] < mincost){ mincost = dist[j]; index = j; } } visit[index] = true; sum += mincost; for(int j = 0; j < m; j ++){ if(!visit[j] && dist[j] > graph[index][j]){ dist[j] = graph[index][j]; } } } return sum; }
转载:http://blog.csdn.net/fengchaokobe/article/details/7521780
http://www.cnblogs.com/aiyelinglong/archive/2012/03/26/2418707.html