pandas模块

pandas更多的是excel/csv文件处理,excel文件, 对numpy+xlrd模块做了一层封装

pandas的数据类型

import pandas as pd
import numpy as np

serise(现在一般不使用(一维))

df = pd.Series(np.array([1,2,3,4]))
print(df)

DataFrame多维

dates = pd.date_range('20190101', periods=6, freq='M')
print(dates)

values = np.random.rand(6, 4) * 10
print(values)

columns = ['c1','c2','c3','c3']

df = pd.DataFrame(values,index=dates,columns=columns)
print(df)

DatetimeIndex(['2019-01-31', '2019-02-28', '2019-03-31', '2019-04-30',
'2019-05-31', '2019-06-30'],
dtype='datetime64[ns]', freq='M')
[[1.16335011 4.48613539 7.68543002 2.28527564]
[8.93474708 7.31073142 8.61253719 2.50506357]
[4.88797902 6.81381968 9.0847644 8.34332396]
[6.74341716 9.32192571 9.01122189 2.93191827]
[3.83096571 3.27206377 7.25800888 1.30570883]
[2.87592228 0.17123983 4.97889883 5.4085225 ]]
c1 c2 c3 c3
2019-01-31 1.163350 4.486135 7.685430 2.285276
2019-02-28 8.934747 7.310731 8.612537 2.505064
2019-03-31 4.887979 6.813820 9.084764 8.343324
2019-04-30 6.743417 9.321926 9.011222 2.931918
2019-05-31 3.830966 3.272064 7.258009 1.305709
2019-06-30 2.875922 0.171240 4.978899 5.408523

DataFrame属性

dtype 查看数据类型
index 查看行序列或者索引
columns 查看各列的标签
values 查看数据框内的数据,也即不含表头索引的数据
describe 查看数据每一列的极值,均值,中位数,只可用于数值型数据
transpose 转置,也可用T来操作
sort_index 排序,可按行或列index排序输出
sort_values 按数据值来排序

print(df.dtypes)
print(df.index)
print(df.columns)
print(df.describe())
print(df.T)

import pandas as pd
import numpy as np
dates = pd.date_range('20190101', periods=6, freq='M')
print(dates)
values = np.random.rand(6, 4) * 10
print(values)
columns = ['c4','c2','c3','c1']
df = pd.DataFrame(values,index=dates,columns=columns)
print(df)

c4 c2 c3 c1
2019-01-31 5.820943 8.551214 4.164049 1.268047
2019-02-28 6.809855 3.161353 1.934861 3.639872
2019-03-31 0.679617 6.166411 3.264278 3.919507
2019-04-30 2.634395 8.825472 2.345733 0.301147
2019-05-31 9.859531 9.294794 4.025121 3.545862
2019-06-30 5.566927 0.043362 5.301493 0.214879
df.T
2019-01-31 2019-02-28 2019-03-31 2019-04-30 2019-05-31 2019-06-30
c4 5.820943 6.809855 0.679617 2.634395 9.859531 5.566927
c2 8.551214 3.161353 6.166411 8.825472 9.294794 0.043362
c3 4.164049 1.934861 3.264278 2.345733 4.025121 5.301493
c1 1.268047 3.639872 3.919507 0.301147 3.545862 0.214879
df = df.sort_index(axis=1)  # 0列,1是行
df
c1 c2 c3 c4
2019-01-31 1.268047 8.551214 4.164049 5.820943
2019-02-28 3.639872 3.161353 1.934861 6.809855
2019-03-31 3.919507 6.166411 3.264278 0.679617
2019-04-30 0.301147 8.825472 2.345733 2.634395
2019-05-31 3.545862 9.294794 4.025121 9.859531
2019-06-30 0.214879 0.043362 5.301493 5.566927
df.sort_values('c3')
c1 c2 c3 c4
2019-02-28 3.639872 3.161353 1.934861 6.809855
2019-04-30 0.301147 8.825472 2.345733 2.634395
2019-03-31 3.919507 6.166411 3.264278 0.679617
2019-05-31 3.545862 9.294794 4.025121 9.859531
2019-01-31 1.268047 8.551214 4.164049 5.820943
2019-06-30 0.214879 0.043362 5.301493 5.566927

取值

  • df['c1]
2019-01-31    1.268047
2019-02-28    3.639872
2019-03-31    3.919507
2019-04-30    0.301147
2019-05-31    3.545862
2019-06-30    0.214879
Freq: M, Name: c1, dtype: float64
  • df[['c1','c3']]
c1 c3
2019-01-31 1.268047 4.164049
2019-02-28 3.639872 1.934861
2019-03-31 3.919507 3.264278
2019-04-30 0.301147 2.345733
2019-05-31 3.545862 4.025121
2019-06-30 0.214879 5.301493
  • df.loc['2019-01-31':'2019-02-28']
c1 c2 c3 c4
2019-01-31 1.268047 8.551214 4.164049 5.820943
2019-02-28 3.639872 3.161353 1.934861 6.809855
  • df.values[1,1]

3.1613533123062734

  • df
c1 c2 c3 c4
2019-01-31 1.268047 8.551214 4.164049 5.820943
2019-02-28 3.639872 3.161353 1.934861 6.809855
2019-03-31 3.919507 6.166411 3.264278 0.679617
2019-04-30 0.301147 8.825472 2.345733 2.634395
2019-05-31 3.545862 9.294794 4.025121 9.859531
2019-06-30 0.214879 0.043362 5.301493 5.566927
  • df.iloc[:,:]
c1 c2 c3 c4
2019-01-31 1.268047 8.551214 4.164049 5.820943
2019-02-28 3.639872 3.161353 1.934861 6.809855
2019-03-31 3.919507 6.166411 3.264278 0.679617
2019-04-30 0.301147 8.825472 2.345733 2.634395
2019-05-31 3.545862 9.294794 4.025121 9.859531
2019-06-30 0.214879 0.043362 5.301493 5.566927
  • df[df['c1']>3]
c1 c2 c3 c4
2019-02-28 3.639872 3.161353 1.934861 6.809855
2019-03-31 3.919507 6.166411 3.264278 0.679617
2019-05-31 3.545862 9.294794 4.025121 9.859531

值替换

df.iloc[1,1] = 1
df

c1 c2 c3 c4
2019-01-31 1.268047 8.551214 4.164049 5.820943
2019-02-28 3.639872 1.000000 1.934861 6.809855
2019-03-31 3.919507 6.166411 3.264278 0.679617
2019-04-30 0.301147 8.825472 2.345733 2.634395
2019-05-31 3.545862 9.294794 4.025121 9.859531
2019-06-30 0.214879 0.043362 5.301493 5.566927

pandas操作表格

from io import StringIO
test_data = '''
5.1,,1.4,0.2
4.9,3.0,1.4,0.2
4.7,3.2,,0.2
7.0,3.2,4.7,1.4
6.4,3.2,4.5,1.5
6.9,3.1,4.9,
,,,
'''
print(test_data)
test_data = StringIO(test_data)  # 把test_data读入内存,相当于变成文件
print(test_data)

# 把数据读入内存,变成csv文件

5.1,,1.4,0.2
4.9,3.0,1.4,0.2
4.7,3.2,,0.2
7.0,3.2,4.7,1.4
6.4,3.2,4.5,1.5
6.9,3.1,4.9,
,,,

<_io.StringIO object at 0x000001665DD6A828>

df = pd.read_csv('test.csv', header=None) #读取文件  # header没有columns
df.columns =['c1','c2','c3','c4']
df
c1 c2 c3 c4
0 5.1 NaN 1.4 0.2
1 4.9 3.0 1.4 0.2
2 4.7 3.2 NaN 0.2
3 7.0 3.2 4.7 1.4
4 6.4 3.2 4.5 1.5
5 6.9 3.1 4.9 NaN
6 NaN NaN NaN NaN

缺失值处理

df = df.dropna(axis=0) # 1列,0行
df

c1 c2 c3 c4
1 4.9 3.0 1.4 0.2
3 7.0 3.2 4.7 1.4
4 6.4 3.2 4.5 1.5

df = df.dropna(thresh=3) # 必须得有4个值
df

c1 c2 c3 c4
0 5.1 NaN 1.4 0.2
1 4.9 3.0 1.4 0.2
2 4.7 3.2 NaN 0.2
3 7.0 3.2 4.7 1.4
4 6.4 3.2 4.5 1.5
5 6.9 3.1 4.9 NaN

合并处理

df1 = pd.DataFrame(np.zeros((2,3)))
df1

0 1 2
0 0.0 0.0 0.0
1 0.0 0.0 0.0
df2 = pd.DataFrame(np.ones((2,3)))
df2
0 1 2
0 1.0 1.0 1.0
1 1.0 1.0 1.0
pd.concat((df1,df2),axis=1)  # 默认按列0,1行
0 1 2 0 1 2
0 0.0 0.0 0.0 1.0 1.0 1.0
1 0.0 0.0 0.0 1.0 1.0 1.0
df1.append(df2)
0 1 2
0 0.0 0.0 0.0
1 0.0 0.0 0.0
0 1.0 1.0 1.0
1 1.0 1.0 1.0

导入数据

df = pd.read_csv('test.csv', header=None) #读取文件  # header没有columns
# df = pd.read_excel('test.excel',)
df.columns =['c1','c2','c3','c4']
df
c1 c2 c3 c4
0 5.1 NaN 1.4 0.2
1 4.9 3.0 1.4 0.2
2 4.7 3.2 NaN 0.2
3 7.0 3.2 4.7 1.4
4 6.4 3.2 4.5 1.5
5 6.9 3.1 4.9 NaN
6 NaN NaN NaN NaN
df = df.dropna(thresh=4)
df
c1 c2 c3 c4
1 4.9 3.0 1.4 0.2
3 7.0 3.2 4.7 1.4
4 6.4 3.2 4.5 1.5
df.index = ['nick','jason','tank']
df.to_csv('test1.csv')

pandas基础中的基础,一定要学会, <奥卡姆剃刀>

df
ttery issue code code1 code2 time
0 min 20130801-3391 8,4,5,2,9 297734529 NaN 1013395466000
1 min 20130801-3390 7,8,2,1,2 298058212 NaN 1013395406000
2 min 20130801-3389 5,9,1,2,9 298329129 NaN 1013395346000
3 min 20130801-3388 3,8,7,3,3 298588733 NaN 1013395286000
4 min 20130801-3387 0,8,5,2,7 298818527 NaN 1013395226000

posted on 2019-08-19 16:28  黑糖A  阅读(110)  评论(0编辑  收藏  举报