小白学Python——Matplotlib 学习(1)
众所周知,通过数据绘图,我们可以将枯燥的数字转换成容易被人们接受的图表,从而让人留下更加深刻的印象。而大多数编程语言都有自己的绘图工具,matplotlib就是基于Python的绘图工具包,使用它我们可以仅仅使用几行代码就生成 饼图、直方图、功率谱、条形图、错误图、散点图、气泡图,甚至生成动态图型也都很轻松。而且它的绘图方法丰富,可以在各种交互式环境中运行,且生成的图像质量高、兼容各种硬拷贝格式。
matplotlib的官网地址是https://matplotlib.org/index.html,下面这些是他们官网的一些示例图形。
pip安装
Matplotlib的安装比较容易,可以直接通过pip安装,也可以通过下载安装包的方式安装。博主使用的是python3,相关的安装命令如下:
pip install matplotlib
Matplotlib是整个包,matplotlib.pyplot
是Matplotlib中的一个模块。对于pyplot模块中的功能,始终存在“当前”图形和轴(根据请求自动创建)。例如,在下面的例子中,在第一次调用plt.plot
创建轴,则后续调用plt.plot
在同一坐标添加额外的线,以及 plt.xlabel
,plt.ylabel
,plt.title
和plt.legend
设置轴标签和标题和添加的图例。pylab
是一个便利模块,可以 在单个命名空间中批量导入 matplotlib.pyplot
(用于绘图)和numpy
(用于数学和使用数组)。不推荐使用pylab,并且由于命名空间污染而强烈建议不要使用它。请改用pyplot。对于非交互式绘图,建议使用pyplot创建图形,然后使用OO界面进行绘图。pyplot是matplotlib的一个模块,pylab是与matplotlib共同安装的模块。
matplotlib的用户指南分为三个等级:入门,中级,高级。在入门级,主要介绍下图内容
这里我首先介绍 使用指南 部分,即 Usage Guide。
1.一张图的组成
在使用matplotlib画图时,你会发现各种参数,下面就说说这些参数具体设置什么
简单绘图
import matplotlib.pyplot as plt import numpy as np x = np.linspace(0, 2, 100) plt.plot(x, x, label='linear') plt.plot(x, x**2, label='quadratic') plt.plot(x, x**3, label='cubic') plt.xlabel('x label') plt.ylabel('y label') plt.title("Simple Plot") plt.legend() plt.show()
sinx 函数
import matplotlib.pyplot as plt import numpy as np x = np.arange(0, 10, 0.2) y = np.sin(x) fig, ax = plt.subplots() ax.plot(x, y)
plt.title("Sin(x)") plt.show()
自定义画图函数
import matplotlib.pyplot as plt import numpy as np def my_plotter(ax, data1, data2, param_dict): """ A helper function to make a graph Parameters ---------- ax : Axes The axes to draw to data1 : array The x data data2 : array The y data param_dict : dict Dictionary of kwargs to pass to ax.plot Returns ------- out : list list of artists added """ out = ax.plot(data1, data2, **param_dict) return out # which you would then use as: data1, data2, data3, data4 = np.random.randn(4, 100) fig, ax = plt.subplots(1, 1) my_plotter(ax, data1, data2, {'marker': 'x'}) plt.show()
生成2个子图
fig, (ax1, ax2) = plt.subplots(1, 2) my_plotter(ax1, data1, data2, {'marker': 'x'}) my_plotter(ax2, data3, data4, {'marker': 'o'})
交互模式
交互模式也可以通过matplotlib.pyplot.ion()
,然后关闭通过打开matplotlib.pyplot.ioff()
。
#交互式示例
import matplotlib.pyplot as plt plt.ion() plt.plot([1.6, 2.7]) plt.title("interactive test") plt.xlabel("index") ax = plt.gca() ax.plot([3.1, 2.2]) #旧版本调用draw()显示图象 plt.draw()
#非交互式示例 import numpy as np import matplotlib.pyplot as plt plt.ioff() for i in range(3): plt.plot(np.random.rand(10)) plt.show()
在交互模式下,pyplot功能会自动绘制到屏幕上。
以交互方式绘制时,如果除了pyplot函数之外还使用对象方法调用,则draw()
只要您想刷新绘图,就会调用。
在要生成一个或多个图形的脚本中使用非交互模式,并在结束或生成一组新图形之前显示它们。在这种情况下,用于 show()
显示图形并阻止执行,直到您手动销毁它们。