SPOJ 3261 (树套树傻逼题)
As another one of their crazy antics, the N (1 ≤ N ≤ 100,000) cows want Farmer John to race against the clock to answer some of their pressing questions.
The cows are lined up in a row from 1 to N, and each one is holding a sign representing a number, Ai (1 ≤ Ai≤ 1,000,000,000). The cows need FJ to perform Q (1 ≤ Q ≤ 50,000) operations, which can be either of the following:
- Modify cow i's number to X (1 ≤ X ≤ 1,000,000,000). This will be represented in the input as a line containing the letter M followed by the space-separated numbers i and X.
- Count how many cows in the range [P, Q] (1 ≤ P ≤ Q ≤ N) have Ai ≤ X (0 ≤ X ≤ 1,000,000,000). This will be represented in the input as a line containing the letter C followed by the space-separated numbers P, Q, and X.
Of course, FJ would like your help.
Input
The first line gives the integers N and Q, and the next N lines give the initial values of Ai. Finally, the next Q lines each contain a query of the form "M i X" or "C P Q X".
Output
Print the answer to each 'C' query, one per line.
Example
Input: 4 6 3 4 1 7 C 2 4 4 M 4 1 C 2 4 4 C 1 4 5 M 2 10 C 1 3 9 Output: 2 3 4 2
题意:给出一段序列,要求有两种操作, 1 修改一个位置的数字, 2 查询一段区间内的小于val的数字有多少个。
sl: 这是区间查询,所以用线段树维护就好了,但是查询小于val的数字有多少个,所以直接随便用一个平衡树求一个rank就好了。 最近刚刚学了SBT.
试了试模板,还是要手敲为妙。 加了挂还是超时,不知道为何。 应该有好方法。 用treap貌似能过?
2 #include <cstring>
3 #include <cstdio>
4 #include <algorithm>
5 #include <cmath>
6
7 using namespace std;
8
9 const int maxn = 100010;
10
11 struct Node {
12 int key, val;
13 Node(){};
14 Node(int a, int b) { key = a; val = b; }
15 bool operator < (Node b) { return val < b.val; }
16 bool operator <= (Node b) { return val <= b.val; }
17 bool operator > (Node b) { return val > b.val; }
18 bool operator >= (Node b) { return val >= b.val; }
19 bool operator == (Node b) { return val == b.val; }
20 Node operator + (int a) {
21 return Node(key, val+a) > Node(key, val) ? Node(key, val+a) : Node(key, val-a);
22 }
23 };
24
25 int sz[maxn*30];
26 int key[maxn*30];
27 int lch[maxn*30];
28 int rch[maxn*30];
29 int tot;
30
31 template<typename Type>
32 class SBT
33 {
34 public:
35 SBT() { Clear(); }
36 void Clear() { root = 0; lch[0] = rch[0] = sz[0] = 0; }
37 static void ClearAll() { tot = 0; }
38 int Size() { return sz[root]; }
39 bool Empty() { return 0 == sz[root]; }
40 bool Find(Type k) { return Find(root, k); }
41 void InsertR(Type k) { Insert(root, k); } // 可重复插入
42 void Insert(Type k) { if (!Find(k)) Insert(root, k); }
43 void Delete(Type k) { if (Find(k)) Delete(root, k); }
44 void DeleteSmaller(Type k) { DeleteSmaller(root, k); }
45 int GetRank(Type k) { return GetRank(root, k); }
46 Type GetKth(int k) { return GetKth(root, k); }
47 Type GetMin() { return GetKth(root, 1); }
48 Type GetMax() { return GetKth(root, Size()); }
49 Type GetPre(Type k) { return GetPre(root, k); }
50 Type GetSuc(Type k) { return GetSuc(root, k); }
51 int GetSmaller(Type k) { return GetSmaller(root, k); } // 返回小于k的元素的个数
52
53 private:
54 void LeftRotate(int &t) {
55 int k = rch[t];
56 rch[t] = lch[k];
57 lch[k] = t;
58 sz[k] = sz[t];
59 sz[t] = 1 + sz[lch[t]] + sz[rch[t]];
60 t = k;
61 }
62 void RightRotate(int &t) {
63 int k = lch[t];
64 lch[t] = rch[k];
65 rch[k] = t;
66 sz[k] = sz[t];
67 sz[t] = 1 + sz[lch[t]] + sz[rch[t]];
68 t = k;
69 }
70 void Maintain(int &t, bool flag) {
71 if (0 == t) return ;
72 if (false == flag) {
73 if (sz[lch[lch[t]]] > sz[rch[t]]) {
74 RightRotate(t);
75 } else if (sz[rch[lch[t]]] > sz[rch[t]]) {
76 LeftRotate(lch[t]);
77 RightRotate(t);
78 } else {
79 return ;
80 }
81 } else {
82 if (sz[rch[rch[t]]] > sz[lch[t]]) {
83 LeftRotate(t);
84 } else if (sz[lch[rch[t]]] > sz[lch[t]]) {
85 RightRotate(rch[t]);
86 LeftRotate(t);
87 } else {
88 return ;
89 }
90 }
91 Maintain(lch[t], false);
92 Maintain(rch[t], true);
93 Maintain(t, false);
94 Maintain(t, true);
95 }
96 Type GetPre(int t, Type k) {
97 if (0 == k) return k;
98 if (k <= key[t]) return GetPre(lch[t], k);
99 Type tmp = GetPre(rch[t], k);
100 if (tmp == k) return key[t];
101 return tmp;
102 }
103 Type GetSuc(int t, Type k) {
104 if (0 == root) return k;
105 if (k >= key[t]) return GetSuc(rch[t], k);
106 Type tmp = GetSuc(lch[t], k);
107 if (tmp == k) return key[t];
108 return tmp;
109 }
110 Type GetKth(int t, int k) {
111 if (sz[lch[t]] >= k) return GetKth(lch[t], k);
112 if (sz[lch[t]] == k - 1) return key[t];
113 return GetKth(rch[t], k - sz[lch[t]] - 1);
114 }
115 int GetRank(int t, Type k) {
116 if (0 == t) return 0;
117 if (k < key[t]) return GetRank(lch[t], k);
118 return sz[lch[t]] + 1 + GetRank(rch[t], k);
119 }
120 int GetSmaller(int t, Type k) {
121 if (0 == t) return 0;
122 if (k <= key[t]) return GetSmaller(lch[t], k);
123 return sz[lch[t]] + 1 + GetSmaller(rch[t], k);
124 }
125 bool Find(int t, Type k) {
126 if (0 == t) return false;
127 else if (k < key[t]) return Find(lch[t], k);
128 else return (key[t] == k || Find(rch[t], k));
129 }
130 void Insert(int &t, Type k) {
131 if (0 == t) {
132 t = ++tot;
133 lch[t] = rch[t] = 0;
134 sz[t]= 1;
135 key[t] = k;
136 return ;
137 }
138 sz[t]++;
139 if (k < key[t]) Insert(lch[t], k);
140 else Insert(rch[t], k);
141 Maintain(t, k >= key[t]);
142 }
143 void DeleteSmaller(int &t , Type k) {
144 if (0 == t) return ;
145 if ( key[t] < k ) {
146 t = rch[t];
147 DeleteSmaller(t , key);
148 } else {
149 DeleteSmaller(lch[t] , k);
150 sz[t] = 1 + sz[lch[t]] + sz[rch[t]];
151 }
152 }
153 Type Delete(int &t, Type k) {
154 sz[t]--;
155 if ((key[t] == k) || (k < key[t] && 0 == lch[t]) || (k > key[t] && 0 == rch[t])) {
156 Type tmp = key[t];
157 if (0 == lch[t] || 0 == rch[t]) {
158 t = lch[t] + rch[t];
159 } else {
160 key[t] = Delete(lch[t], key[t] + 1);
161 }
162 return tmp;
163 } else {
164 if (k < key[t]) {
165 return Delete(lch[t], k);
166 } else {
167 return Delete(rch[t], k);
168 }
169 }
170 }
171 private:
172 int root;
173 };
174
175 SBT <int> sbt[maxn<<2];
176 int a[maxn];
177
178 void build(int L,int R,int o) {
179 sbt[o].Clear();
180 for(int i=L;i<=R;i++) {
181 sbt[o].InsertR(a[i]);
182 }
183 if(L==R) return ;
184 int mid=(L+R)>>1;
185 build(L,mid,o<<1);
186 build(mid+1,R,o<<1|1);
187 }
188 void Update(int L,int R,int o,int pos,int val) {
189 sbt[o].Delete(a[pos]);
190 sbt[o].InsertR(val);
191 if(L==R) return ;
192 int mid=(L+R)>>1;
193 if(pos<=mid) Update(L,mid,o<<1,pos,val);
194 if(pos>mid) Update(mid+1,R,o<<1|1,pos,val);
195 }
196
197 int Query(int L,int R,int o,int ls,int rs,int val) {
198 if(ls<=L&&rs>=R) {
199 return sbt[o].GetRank(val);
200 }
201 int mid=(L+R)>>1; int res=0;
202 if(ls<=mid) res+=Query(L,mid,o<<1,ls,rs,val);
203 if(rs>mid) res+=Query(mid+1,R,o<<1|1,ls,rs,val);
204 return res;
205 }
206 inline int read()
207 {
208 int m=0;
209 char ch=getchar();
210 while(ch<'0'||ch>'9'){ch=getchar(); }
211 while(ch>='0'&&ch<='9'){m=m*10+ch-'0'; ch=getchar(); }
212 return m;
213 }
214 int main() {
215 int n,m; char op[3];
216 int ls,rs,val;
217 while(scanf("%d %d",&n,&m)==2) {
218 for(int i=1;i<=n;i++) {
219 a[i]=read();
220 }
221 SBT<int> :: ClearAll();
222 build(1,n,1);
223 for(int i=1;i<=m;i++) {
224 scanf("%s",op);
225 if(op[0]=='C') {
226 ls=read(); rs=read(); val=read();
227 int ans=Query(1,n,1,ls,rs,val);
228 printf("%d\n",ans);
229 }
230 else {
231 ls=read(); rs=read();
232 Update(1,n,1,ls,val);
233 a[ls]=val;
234 }
235 }
236 }
237 return 0;
238 }