POJ 2778 DNA Sequence

DNA Sequence
Time Limit: 1000MSMemory Limit: 65536K
Total Submissions: 10868Accepted: 4146

Description

It's well known that DNA Sequence is a sequence only contains A, C, T and G, and it's very useful to analyze a segment of DNA Sequence,For example, if a animal's DNA sequence contains segment ATC then it may mean that the animal may have a genetic disease. Until now scientists have found several those segments, the problem is how many kinds of DNA sequences of a species don't contain those segments. 

Suppose that DNA sequences of a species is a sequence that consist of A, C, T and G,and the length of sequences is a given integer n. 

Input

First line contains two integer m (0 <= m <= 10), n (1 <= n <=2000000000). Here, m is the number of genetic disease segment, and n is the length of sequences. 

Next m lines each line contain a DNA genetic disease segment, and length of these segments is not larger than 10. 

Output

An integer, the number of DNA sequences, mod 100000.

Sample Input

4 3 AT AC AG AA 

Sample Output

36

题意:给出一组模式串求出给定长度的字符串的组合数,要满足不包含模式串。
sl:先将模式串建成一个自动机,(要把失配边加上)然后根据图构造出一个矩阵,求长度为k的字符串就相当于在自动机上走K步
n有2*1e9那么大不能用白书介绍的dp方法,想到离散数学,很容易知道,求长度为k的路径就是求矩阵的k次方,所以做下快速幂
然后把结果加起来就可以。

  1 #include<cstdio>
  2 #include<cstring>
  3 #include<algorithm>
  4 #include<queue>
  5 using namespace std;
  6 typedef long long LL;
  7 const int MAX = 200;
  8 const int MOD = 100000;
  9 char p[MAX];
 10 LL map[MAX][MAX];
 11 LL ans[MAX][MAX],sz;
 12 LL z[MAX][MAX];
 13 struct AC
 14 {
 15     int ch[MAX][MAX],val[MAX],f[MAX];
 16     void init(){ sz=1; memset(ch,0,sizeof(ch)); memset(val,0,sizeof(val));}
 17 
 18     int index(char c)
 19     {
 20         if(c=='A'return 0;
 21         else if(c=='C'return 1;
 22         else if(c=='G'return 2;
 23         else return 3;
 24     }
 25 
 26     void insert(char *s)
 27     {
 28         int u = 0, n = strlen(s);
 29         for(int i = 0; i < n; i++)
 30         {
 31             int c = index(s[i]);
 32             if(!ch[u][c])
 33             {
 34                 memset(ch[sz], 0sizeof(ch[sz]));
 35                 val[sz] = 0;
 36                 ch[u][c] = sz++;
 37             }
 38             u = ch[u][c];
 39         }
 40         val[u] = 1;
 41       }
 42 
 43     void getfail()
 44     {
 45         queue<int> q;
 46         f[0] = 0;
 47         for(int c = 0; c < 4; c++)
 48         {
 49           int u = ch[0][c];
 50           if(u) { f[u] = 0; q.push(u); }
 51         }
 52         while(!q.empty())
 53         {
 54           int r = q.front(); q.pop();
 55           for(int c = 0; c < 4; c++) {
 56             int u = ch[r][c];
 57             if(!u) { ch[r][c] = ch[f[r]][c]; continue; }
 58             q.push(u);
 59             int v = f[r];
 60             while(v && !ch[v][c]) v = f[v];
 61             f[u] = ch[v][c];
 62             val[u] |= val[f[u]];
 63           //  printf("%d\n",val[u]);
 64           }
 65         }
 66   }
 67 };
 68 
 69 
 70 void multiply(LL x[MAX][MAX],LL y[MAX][MAX])
 71 {
 72     for(int i=0;i<sz;i++)
 73     {
 74         for(int j=0;j<sz;j++)
 75         {
 76             z[i][j]=0;
 77             for(int k=0;k<sz;k++)
 78             z[i][j]=z[i][j]+x[i][k]*y[k][j];
 79             z[i][j]%=MOD;
 80         }
 81     }
 82     for(int i=0;i<sz;i++)
 83     for(int j=0;j<sz;j++)
 84     y[i][j]=z[i][j];
 85 }
 86 int main()
 87 {
 88     int n,m;
 89     AC ac;
 90     while(scanf("%d %d",&m,&n)==2)
 91     {
 92         ac.init();
 93         for(int i=0;i<m;i++)
 94         {
 95             scanf("%s",p);
 96             ac.insert(p);
 97         }
 98         ac.getfail();
 99         memset(map,0,sizeof(map));
100         memset(ans,0,sizeof(ans));
101         for(int i=0;i<sz;i++)
102         {
103             if(!ac.val[i])
104             {
105                 for(int j=0;j<4;j++)
106                 {
107                     if(!ac.val[ac.ch[i][j]])
108                     map[i][ac.ch[i][j]]++;
109                 }
110             }
111         }
112 
113         for(int i=0;i<sz;i++) ans[i][i]=1;
114         while(n)
115         {
116             if(n & 1) multiply(map,ans);
117             multiply(map,map);
118             n>>=1;
119           }
120 
121           LL res = 0;
122         for(int i=0;i<sz;i++) res=res+ans[0][i];
123         printf("%I64d\n",res%MOD);
124         return 0;
125     }
126 }
posted @ 2014-03-25 21:42  acvc  阅读(188)  评论(0编辑  收藏  举报