(Problem 21)Amicable numbers

Let d(n) be defined as the sum of proper divisors of n (numbers less than n which divide evenly into n). If d(a) = b and d(b) = a, where a ≠ b, then a and b are an amicable pair and each of a and b are called amicable numbers.

For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110; therefore d(220) = 284. The proper divisors of 284 are 1, 2, 4, 71 and 142; so d(284) = 220.

Evaluate the sum of all the amicable numbers under 10000.

d(n)定义为n 的所有真因子(小于 n 且能整除 n 的整数)之和。 如果 d(a) = b 并且 d(b) = a, 且 a ≠ b, 那么 a 和 b 就是一对相亲数(amicable pair),并且 a 和 b 都叫做亲和数(amicable number)。

例如220的真因子是 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 和 110; 因此 d(220) = 284. 284的真因子是1, 2, 4, 71 和142; 所以d(284) = 220.

计算10000以下所有亲和数之和。

// (Problem 21)Amicable numbers 
// Completed on Wed, 24 Jul 2013, 06:07
// Language: C
//
// 版权所有(C)acutus   (mail: acutus@126.com) 
// 博客地址:http://www.cnblogs.com/acutus/
#include<stdio.h>

int FactorSum(int n)  //计算n的所有小于n的因素和
{
    int i;
    int sum=1;
    for(i=2; i<=n/2; i++)
    {
        if(n%i==0)
            sum+=i;
    }
    return sum;
}

int main()
{
    int t,i=2;
    int sum=0;
    while(i<10000)
    {
        t=FactorSum(i);
        if(t!=i && FactorSum(t)==i) 
            sum+=i;
        i++;
    }
    printf("%d\n",sum);
    return 0;
}
Answer:
31626
posted @ 2014-02-12 09:54  acutus  阅读(273)  评论(0编辑  收藏  举报
TOP