Ural 1046 Geometrical Dreams(解方程+计算几何)
题目链接:http://acm.timus.ru/problem.aspx?space=1&num=1046
参考博客:http://hi.baidu.com/cloudygoose/item/21fee021a5db348d9d63d17b
参考资料(向量的旋转):http://www.cnblogs.com/woodfish1988/archive/2007/09/10/888439.html
题目大意:就是已知n个点,n个角。点Mi可以与多边形Ai和Ai+1构成等腰三角形,顶角为ang[i]. 现在要你求出这个多边形的n的顶点。
算法思路:刚开始想几何性质,怎么也想不出来一个好的思路。没办法,网搜才知道要用解方程的方法。蛋疼的是没写过,别人的代码有是懂非懂的。慢慢琢磨才发现其实现方程求解的思路。先看看那个参考博客的思路吧。
我只是大致翻译一下他的思想: 我们知道: Ai+1 = Rotate(Ai-Mi,ang[i]) + Mi; (画画图就知道) 整理下就是:Ai+1 = P1' * Ai + P2';
而由A1递推来 : Ai = P1 * A1 + P2; 我们编程时要不断更新这个P1和P2;
具体看代码:
代码:
#include<cstdio> #include<cstring> #include<cmath> #include<iostream> #include<algorithm> #include<queue> using namespace std; const double eps = 1e-8; const double PI = acos(-1.0); const double INF = 1000000000000000.000; struct Point{ double x,y; Point(double x=0, double y=0) : x(x),y(y){ } //构造函数 }; typedef Point Vector; struct Circle{ Point c; double r; Circle() {} Circle(Point c,double r): c(c),r(r) {} }; Vector operator + (Vector A , Vector B){return Vector(A.x+B.x,A.y+B.y);} Vector operator - (Vector A , Vector B){return Vector(A.x-B.x,A.y-B.y);} Vector operator * (double p,Vector A){return Vector(A.x*p,A.y*p);} Vector operator / (Vector A , double p){return Vector(A.x/p,A.y/p);} bool operator < (const Point& a,const Point& b){ return a.x < b.x ||( a.x == b.x && a.y < b.y); } int dcmp(double x){ if(fabs(x) < eps) return 0; else return x < 0 ? -1 : 1; } bool operator == (const Point& a, const Point& b){ return dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0; } ///向量(x,y)的极角用atan2(y,x); inline double Dot(Vector A, Vector B){ return A.x*B.x + A.y*B.y; } inline double Length(Vector A) { return sqrt(Dot(A,A)); } inline double Angle(Vector A, Vector B) { return acos(Dot(A,B) / Length(A) / Length(B)); } double Cross(Vector A, Vector B) { return A.x*B.y - A.y * B.x; } Vector vecunit(Vector v){ return v / Length(v);} //单位向量 double torad(double deg) { return deg/180 * PI; } Vector Rotate(Vector A, double rad) { return Vector(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad)); } /*************************************分 割 线*****************************************/ int main() { //freopen("E:\\acm\\input.txt","r",stdin); const int maxn = 60; Point M[maxn],P1,P2; double ang[maxn]; int n; cin>>n; for(int i=1; i<=n; i++) { scanf("%lf %lf",&M[i].x,&M[i].y); } for(int i=1; i<=n; i++) { scanf("%lf",&ang[i]); ang[i] = torad(ang[i]); } P1 = Point(1,0); P2 = Point(0,0); for(int i=1; i<=n; i++) { P1 = Rotate(P1,ang[i]); P2 = Rotate(P2,ang[i]); P2 = P2 + M[i] - Rotate(M[i],ang[i]); } P1.x -= 1; P2.x = -P2.x; P2.y = -P2.y; Point ans; //求ans时,把P1,P2看成复平面中的点,即P1表示为P1.x+P2.y*i; 然后ans = P2/P1,用虚数就可求出。 ans.x = (P1.x*P2.x+P1.y*P2.y)/(P1.x*P1.x+P1.y*P1.y); ans.y = (-P1.y*P2.x+P1.x*P2.y)/(P1.x*P1.x+P1.y*P1.y); for(int i=1; i<=n; i++) { printf("%.2lf %.2lf\n",ans.x,ans.y); ans = M[i] + Rotate(ans-M[i],ang[i]); } }