ural 1333 化平面为点计算覆盖率
题目链接:http://acm.timus.ru/problem.aspx?space=1&num=1333
#include<cstdio> #include<cstring> #include<cmath> #include<iostream> #include<algorithm> #include<queue> using namespace std; const double eps = 1e-8; const double PI = acos(-1.0); const double INF = 1000000000000000.000; struct Point{ double x,y; Point(double x=0, double y=0) : x(x),y(y){ } //构造函数 }; typedef Point Vector; struct Circle{ Point c; double r; Circle() {} Circle(Point c,double r): c(c),r(r) {} }; Vector operator + (Vector A , Vector B){return Vector(A.x+B.x,A.y+B.y);} Vector operator - (Vector A , Vector B){return Vector(A.x-B.x,A.y-B.y);} Vector operator * (double p,Vector A){return Vector(A.x*p,A.y*p);} Vector operator / (Vector A , double p){return Vector(A.x/p,A.y/p);} bool operator < (const Point& a,const Point& b){ return a.x < b.x ||( a.x == b.x && a.y < b.y); } int dcmp(double x){ if(fabs(x) < eps) return 0; else return x < 0 ? -1 : 1; } bool operator == (const Point& a, const Point& b){ return dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0; } ///向量(x,y)的极角用atan2(y,x); inline double Dot(Vector A, Vector B){ return A.x*B.x + A.y*B.y; } inline double Length(Vector A) { return sqrt(Dot(A,A)); } inline double Angle(Vector A, Vector B) { return acos(Dot(A,B) / Length(A) / Length(B)); } double Cross(Vector A, Vector B) { return A.x*B.y - A.y * B.x; } Point read_point(){ Point A; scanf("%lf %lf",&A.x,&A.y); return A; } /*************************************分 割 线*****************************************/ const int maxn = 15; Circle C[maxn]; int main() { //freopen("E:\\acm\\input.txt","r",stdin); int N; cin>>N; for(int i=1;i<=N;i++){ scanf("%lf %lf %lf",&C[i].c.x,&C[i].c.y,&C[i].r); } double cnt = 0; for(double x = 0.000;x<=1.000;x+=0.001) for(double y = 0.000;y<=1.000;y+=0.001){ Point A = Point(x,y); for(int i=1;i<=N;i++){ if(dcmp(Length(A-C[i].c)-C[i].r) < 0){ cnt ++; break; } } } double prec = cnt/1e6; cout<<prec*100<<endl; }