poj 1556 The door
题目链接:http://poj.org/problem?id=1556
#include<cstdio> #include<cstring> #include<cmath> #include<iostream> #include<algorithm> #include<queue> using namespace std; const int maxn = 1000; const int maxe = 20000; const int INF = 0x3f3f3f; const double eps = 1e-8; const double PI = acos(-1.0); struct Point{ double x,y; Point(double x=0, double y=0) : x(x),y(y){ } //构造函数 }; typedef Point Vector; Vector operator + (Vector A , Vector B){return Vector(A.x+B.x,A.y+B.y);} Vector operator - (Vector A , Vector B){return Vector(A.x-B.x,A.y-B.y);} Vector operator * (Vector A , double p){return Vector(A.x*p,A.y*p);} Vector operator / (Vector A , double p){return Vector(A.x/p,A.y/p);} bool operator < (const Point& a,const Point& b){ return a.x < b.x ||( a.x == b.x && a.y < b.y); } int dcmp(double x){ if(fabs(x) < eps) return 0; else return x < 0 ? -1 : 1; } bool operator == (const Point& a, const Point& b){ return dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0; } ///向量(x,y)的极角用atan2(y,x); double Dot(Vector A, Vector B){ return A.x*B.x + A.y*B.y; } double Length(Vector A) { return sqrt(Dot(A,A)); } double Angle(Vector A, Vector B) { return acos(Dot(A,B) / Length(A) / Length(B)); } double Cross(Vector A, Vector B) { return A.x*B.y - A.y * B.x; } double Area2(Point A,Point B,Point C) { return Cross(B-A,C-A); } bool SegmentIntersection(Point a1, Point a2, Point b1, Point b2) { bool flag = max(a1.x, a2.x) >= min(b1.x, b2.x) && max(b1.x, b2.x) >= min(a1.x, a2.x) && max(a1.y, a2.y) >= min(b1.y, b2.y) && max(b1.y, b2.y) >= min(a1.y, a2.y); double c1 = Cross(a2-a1,b1-a1), c2 = Cross(a2-a1,b2-a1), c3 = Cross(b2-b1,a1-b1), c4 = Cross(b2-b1,a2-b1); return flag && dcmp(c1) * dcmp(c2) < 0 && dcmp(c3) * dcmp(c4) < 0; } bool SegmentProperIntersection(Point a1,Point a2,Point b1,Point b2){ double c1 = Cross(a2-a1,b1-a1), c2 = Cross(a2-a1,b2-a1), c3 = Cross(b2-b1,a1-b1), c4 = Cross(b2-b1,a2-b1); return dcmp(c1) * dcmp(c2) < 0 && dcmp(c3) * dcmp(c4) < 0; } struct Edge{ int u,v; double w; int next; void assign(int u_,int v_,double w_,int next_){ u = u_; v = v_; w = w_; next = next_; } bool operator < (const Edge& r) const{ return w > r.w; } }edges[maxe]; struct Dijkstra{ int s,t; int head[maxn]; int cnt; double d[maxn]; void addedge(int u,int v,double w){ edges[cnt].assign(u,v,w,head[u]); head[u] = cnt++; } void init(int s_,int t_){ s = s_; t = t_; cnt = 0; memset(head,-1,sizeof(head)); } double dijkstra(){ priority_queue<Edge> Q; while(!Q.empty()) Q.pop(); for(int i=1;i<=maxn;i++) d[i] = INF; bool vis[maxn]; memset(vis,0,sizeof(vis)); Edge edge = {s,0,0}; Q.push(edge); d[s] = 0; while(!Q.empty()){ Edge e = Q.top() ; Q.pop() ; int u = e.u; if(vis[u]) continue; vis[u] = true; for(int i=head[u];i!=-1;i=edges[i].next){ int v = edges[i].v; if( d[v] > d[u] + edges[i].w){ d[v] = d[u] + edges[i].w; Edge edge = {v,0,d[v]}; Q.push(edge); } } } return d[t]; } }; /************************分割线****************************/ Point P[maxn][4]; int n; Dijkstra solver; int main() { //freopen("E:\\acm\\input.txt","r",stdin); while(cin>>n && n != -1){ solver.init(1,4*n+2); P[0][0] =Point(0,5); P[n+1][0] =Point(10,5); for(int i=1;i<=n;i++){ double x,y; scanf("%lf",&x); for(int j=0;j<=3;j++){ scanf("%lf",&y); P[i][j]=Point(x,y); } } for(int i=0;i<=n;i++){ if(i==0){ for(int j=i+1;j<=n;j++) for(int k=0;k<=3;k++){ int flag = true; for(int m=1;m<=j-1;m++){ Point a1=P[m][0],a2=P[m][1],b1=P[m][2],b2=P[m][3]; if(!SegmentIntersection(P[0][0],P[j][k],a1,a2) && !SegmentIntersection(P[0][0],P[j][k],b1,b2)){ flag = false; break; } } if(flag){ solver.addedge(1,4*j+k-2,Length(P[0][0]-P[j][k])); } } int flag = true; for(int m=1;m<=n;m++){ Point a1=P[m][0],a2=P[m][1],b1=P[m][2],b2=P[m][3]; if(!SegmentIntersection(P[0][0],P[n+1][0],a1,a2) && !SegmentIntersection(P[0][0],P[n+1][0],b1,b2)){ flag = false; break; } } if(flag){ solver.addedge(1,4*n+2,Length(P[0][0]-P[n+1][0])); } } else{ for(int h=0;h<=3;h++){ //确定点P[i][h] for(int j=i+1;j<=n;j++) for(int k=0;k<=3;k++){ //确定点p[j][k]; int flag = true; for(int m=i+1;m<=j-1;m++){ Point a1=P[m][0],a2=P[m][1],b1=P[m][2],b2=P[m][3]; if(!SegmentIntersection(P[i][h],P[j][k],a1,a2)&&!SegmentIntersection(P[i][h],P[j][k],b1,b2)){ flag = false; break; } } if(flag){ solver.addedge(4*i+h-2,4*j+k-2,Length(P[i][h]-P[j][k])); } } int flag = true; for(int m=i+1;m<=n;m++){ Point a1=P[m][0],a2=P[m][1],b1=P[m][2],b2=P[m][3]; if(!SegmentIntersection(P[i][h],P[n+1][0],a1,a2)&&!SegmentIntersection(P[i][h],P[n+1][0],b1,b2)){ flag = false; break; } } if(flag){ solver.addedge(4*i+h-2,4*n+2,Length(P[i][h]-P[n+1][0])); } } } } printf("%.2f\n",solver.dijkstra()); } }