LA 3263 欧拉定理
#include<cstdio> #include<cstring> #include<cmath> #include<iostream> #include<algorithm> #include<queue> using namespace std; const int maxn = 310; const int maxe = 100000; const int INF = 0x3f3f3f; struct Point{ double x,y; Point(double x=0, double y=0) : x(x),y(y){ } //构造函数 }; typedef Point Vector; Vector operator + (Vector A , Vector B){return Vector(A.x+B.x,A.y+B.y);} Vector operator - (Vector A , Vector B){return Vector(A.x-B.x,A.y-B.y);} Vector operator * (Vector A , double p){return Vector(A.x*p,A.y*p);} Vector operator / (Vector A , double p){return Vector(A.x/p,A.y/p);} bool operator < (const Point& a,const Point& b){ return a.x < b.x ||( a.x == b.x && a.y < b.y); } const double eps = 1e-10; int dcmp(double x){ if(fabs(x) < eps) return 0; else return x < 0 ? -1 : 1; } bool operator == (const Point& a, const Point& b){ return dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0; } ///向量(x,y)的极角用atan2(y,x); double Dot(Vector A, Vector B){ return A.x*B.x + A.y*B.y; } double Length(Vector A) { return sqrt(Dot(A,A)); } double Angle(Vector A, Vector B) { return acos(Dot(A,B) / Length(A) / Length(B)); } double Cross(Vector A, Vector B) { return A.x*B.y - A.y * B.x; } double Area2(Point A,Point B,Point C) { return Cross(B-A,C-A); } ///向量的逆时针旋转,rad 为旋转的角; Vector Rotate(Vector A, double rad) { return Vector(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad)); } ///特殊的,下面函数计算向量的单位法向量,即左旋90,在长度归一化; Vector Normal(Vector A){ double L = Length(A); return Vector(-A.y/L, A.x/L); } ///直线用参数式 P = P'+ t * v;P'为直线上一点,v为方向向量; ///t不受限制,为直线,t>0 为射线, 0=<t<=1为线段; ///推导暂时不会,下面计算直线P+tv和Q+tw的交点。调用前先确保两直线有唯一交点;即判定Cross(v,w) 非0; Point GetLineIntersecion(Point P, Vector v,Point Q,Vector w){ Vector u = P - Q; double t = Cross(w,u)/Cross(v,w); return P + v*t; } ///求点到直线的距离,利用h*|AB| == AB(向量) * AP(向量); double DistanceToLine(Point P,Point A,Point B){ Vector v1 = B - A, v2 = P - A; return fabs(Cross(v1,v2)) / Length(v1); } ///求点P到线段AB的距离,先看Q点在线段外还是内;利用点积就可以, double DistanceToSegment(Point P,Point A,Point B){ if(A == B) return Length(P-A); Vector v1 = B - A,v2 = P - A,v3 = P - B; if(dcmp(Dot(v1,v2)) < 0) return Length(v2); else if(dcmp(Dot(v1,v3) > 0)) return Length(v2); else return fabs(Cross(v1,v2))/Length(v1); } ///如果要求Q的话:(当然满足Q在线段内),由公式Dot(v,P-(A+t'*v)) == 0 推出; Point GetLineProjection(Point P,Point A,Point B){ Vector v = B - A; return A + v * (Dot(v,P-A)/Dot(v,v)); } ///判定线段是否规范相交; bool SegmentProperIntersection(Point a1,Point a2,Point b1,Point b2){ double c1 = Cross(a2-a1,b1-a1), c2 = Cross(a2-a1,b2-a1), c3 = Cross(b2-b1,a1-b1), c4 = Cross(b2-b1,a2-b1); return dcmp(c1) * dcmp(c2) < 0 && dcmp(c3) * dcmp(c4) < 0; } ///如果允许在端点处相交:c1和c2都是0,表示两线段共线;如果只有其中一个为0,则一条线段的端点在另一条线段上; ///下面的代码判断一个点P是否在一条线段AB上(不包括A,B点); bool OnSegment(Point P,Point A,Point B){ return dcmp(Cross(A-P,B-P)) == 0 && dcmp(Dot(P-A,P-B)) < 0; } ///多边形 ///求面积 double PolygonArea(Point* p,int n){ double area = 0; for(int i=1;i<n-1;i++){ area += Cross(p[i]-p[0],p[i+1]-p[0]); } return area/2; } int main() { //freopen("E:\\acm\\input.txt","r",stdin); //freopen("E:\\acm\\output.txt","w",stdout); Point p[maxn],v[maxn*maxn]; int n,T=1; while(scanf("%d",&n)==1 && n){ for(int i=0;i<n;i++) { scanf("%lf %lf",&p[i].x,&p[i].y); v[i] = p[i]; } n--; int vcnt = n, ecnt = n; for(int i=0;i<n;i++) for(int j=i+1;j<n;j++){ if( SegmentProperIntersection(p[i],p[i+1],p[j],p[j+1]) ){ v[vcnt++] = GetLineIntersecion(p[i],p[i+1]-p[i],p[j],p[j+1]-p[j]); } } sort(v,v+vcnt); ///排序等会好去重; vcnt = unique(v,v+vcnt) - v; ///求出不重复的点的个数; for(int i=0;i<vcnt;i++) for(int j=0;j<n;j++) if( OnSegment(v[i],p[j],p[j+1]) ) ecnt++; printf("Case %d: There are %d pieces.\n",T++,ecnt+2-vcnt); } return 0; }