复旦考研信息整理

复旦大学考研网:http://www.kaofudan.com/kaoyanjingyan/

复旦大学考研资料:http://yz.kaoyan.com/fudan/ziliao/

复旦大学考研真题:http://download.kaoyan.com/list-12-t-1

复旦大学考研网:http://www.kaofudan.com/kaoyanziliao/

计算机科学与技术专业:http://www.kaofudan.com/kaoyanziliao/jisuanjikexuejishuxueyuan/fudandaxue_335.html

                               http://www.100exam.com/WebSpecF/EnrolDetail.aspx?id=118717

英语作文模板:http://www.kaofudan.com/kaoyanjingyan/4069.html

考研流程:http://jingyan.baidu.com/article/fec4bce2035a41f2618d8bdd.html

考研初试具体内容:

注:初试每个学校可能要求不同,视具体报考学校而定,有些学校是全国统考,有些则是自主命题。但复试都是所报考学校自主命题。

1、政治:总共100分

考研政治题型和考察科目比较稳定。考研政治包括五部分:
《马克思主义基本原理概论》占30%
《毛爷爷思想和中国特色社会主义理论体系概论》占30%(注:用原名会发不出这篇博客)
《中国*现代史纲要》占15%
《思想道德修养与法律基础》占15%
《形势与政策》占10%

政治课复*攻略:

摘自别人的博客:

  复旦大学考研初试,个人政治发挥的不错,总结下经验,主要还是在政治各科的复*时间安排上,个人认为应先复*中国*现代史。虽然在高中也有了解到这段历史,但时隔4年也是忘了很多。所以要温故知新,更重要的是要了解这段历史的前因后果,才会促进下面中特理论的复*效率。如此在史论结合的作用下,答题时也会更加胸有成竹。

  其次,应趁热打铁复*中特理论,这样既有利于中国*现代史的巩固又便于更好的理解中特理论。在复*中特理论时要分两块复*:毛爷爷的两大理论和***的四大理论,其中中特理论的经济部分是历年考试的重点,要重点复*。

  接下来应该复*马克思基本原理。其中哲学部分,应重点记忆那些基本原理,并再此基础上要有一定的理解,能够用原理分析一些问题。政经部分是政治中较难的一块,但对于复旦大学考研政治这门公共课的复*,也不存在太难的复*知,当然出题人也不会出太难的题。科社部分大题看一下就行,考的内容不是很多。

  基础这门课是大学的公共必修课,由于在大学刚学过,所以复*起来相对轻松一些。但一定要注意基础的复*,每一个知识点都要准确记忆不能似是而非,因为这门课特殊在于看着很简单都明白,所以同学们在复*时就容易犯错误,只是草率的看一遍而不做具体记忆,这样在考场上就很被动,容易失分。

复*资料:http://wenku.baidu.com/link?url=oMqr6YT0euN7I6bKyTuk1CrRvDl8Yopwb28x0H0Jj0wXCaHJ3hax0DvqQ75f5h36UdpoqU6O2iWjWBAwMhWR-bGqlo9kACehZ6OgQzsTvzq

2、英语:

第一题 完形填空(难) 10分
第二题 阅读理解A(一般阅读理解,从*到大做的那种),4篇 40分
阅读理解B(*几年来一直是七选五,超难) 10分
阅读理解C(翻译 英译汉五个 ) 10分
第三题 *作文(写信或建议书之类的,不定) 10分
大作文(*几年都是漫画作文) 20分
听力一般复试时考察.具体视报考学校而定.
考试形式、考试内容与试卷结构
(一)考试形式
考试形式为笔试.考试时间为180分钟.满分为100分.
试卷分试题册和答题卡.答题卡分为答题卡1和答题卡2.考生应将1~45题的答案按要求填涂在答题卡1上,将46~52题的答案写在答题卡2上.
(二)考试内容与试卷结构
试题分三部分,共52题,包括英语知识运用、阅读理解和写作.
第一部分英语知识运用
该部分不仅考查考生对不同语境中规范的语言要素(包括词汇、表达方式和结构)的掌握程度,而且还考查考生对语段特征(如连贯性和一致性等)的辨识能力等.共20*题,每*题0.5分,共10分.
在一篇240~280词的文章中留出20个空白,要求考生从每题给出的4个选项中选出最佳答案,使补全后的文章意思通顺、前后连贯、结构完整.考生在答题卡1上作答.
第二部分阅读理解
该部分由A、B、C三节组成,考查考生理解书面英语的能力.共30*题,每*题2分,共60分.
A节(20题):主要考查考生理解主旨要义、具体信息、概念性含义,进行有关的判断、推理和引申,根据上下文推测生词的词义等能力.要求考生根据所提供的四篇(总长度约为1600词)文章的内容,从每题所给出的4个选项中选出最佳答案.考生在答题卡1上作答.
B节(5题):主要考查考生对诸如连贯性、一致性等语段特征以及文章结构的理解.本部分有3种备选题型.每次考试从这3种备选题型中选择一种进行考查.考生在答题卡1上作答.
备选题型有:
1)本部分的内容是一篇总长度为500~600词的文章,其中有5段空白,文章后有6-7段文字,要求考生根据文章内容从这6-7段文字中选择能分别放进文章中5个空白处的5段
2)在一篇长度约500-600词的文章中,各段落的原有顺序已经被打乱,要求考生根据文章内容和结构将所列段落(7-8个)重新排序.其中有2-3个段落在文章中的位置已经给出.
3)在一篇长度为500词的文章的前或后有6-7段文字或6-7个概括句或*标题,这些文字或标题分别是对文章中某一部分的概括、阐述或举例.要求考生根据文章内容,从这6-7个选项中选出最恰当的5段文字或5个标题填入文章的空白处.
C节(5*题)①:主要考察考生准确理解概念或结构较复杂的英语文字材料的能力.要求考生阅读一篇约400词的文章,并将其中5个划线部分(约150词)译成汉语,要求疑问准确、完整、通顺.考生在答题卡2上作答.
第三部分写作
该部分由A、B两节组成,考查考生的书面表达能力.总分30分.
A节:考生根据所给情景写出一篇约100词(标点符号不计算在内)的应用性短文,包括私人和公务信函、备忘录、摘要、报告等.考生在答题卡2上作答.满分10分.
B节:考生根据提示信息写出一篇160~200词的短文(标点符号不计算在内).提示信息的形式有主题句、写作提纲、规定情景、图、表等.考生在答题卡2上作答.满分20分.
硕士研究生入学考试将英译汉试题作为阅读理解的一部分,其目的是测试考生根据上下文准确理解概念或复杂结构并用汉语正确予以表达的能力.

考研英语的一些*建议:http://edu.people.com.cn/kaoyan/n/2014/0519/c112975-25036924.html

辅导资料:考试虫的《长难句分析》,建议以每年的考研真题为主,其他资料:http://zhidao.baidu.com/link?url=gN6mJNlJ2yUIeevPmi_tdp5JsYX41d7tGFTRce4mI3NT3l-uEZpNzSTKfViByKnthispLF7hQK7PjmNfr3sRXIGakFa97xzbI6UgRjEGRea

 

3、数学:

数学一主要是针对报考理工科的考生。适用的招生专业为:

(1)工学门类的力学、机械工程、光学工程、仪器科学与技术、治金工程、动力工程及工程热物理、电气工程、电子科学与技术、信息与通信工程、控制科学与工程、计算机科学与技术、土木工程、水利工程、测绘科学与技术、交通运输工程、船舶与海洋工程、航空宇航科学与技术、兵器科学与技术、核科学与技术、生物医学工程等一级学科中所有的二级学科、专业。

  (2)工学门类的材料科学与工程、化学工程与技术、地质资源与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科中对数学要求较高的二级学科、专业.

  (3)管理学门类中的管理科学与工程一级学科中所有的二级学科、专业。

 数学二主要是针对农、林、地、矿、油等专业的考生,适用的招生专业为:

  (1)工学门类的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程等一级学科中所有的二级学科、专业。

  (2)工学门类的材料科学与工程、化学工程与技术、地质资源与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科中对数学要求较高的二级学科、专业.

  数学一、数学二可以任选其一的招生专业为:

  工学门类的材料科学与工程、化学工程与技术、地质资源与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科中所有的二级学科、专业。

 数学三主要是针对报考经济学的考生,适用的招生专业为:

  经济学门类的应用经济学一级学科中统计学、数量经济学二级学科、专业;

  管理学门类的工商管理一级学科中企业管理、技术经济及管理二级学科、专业;

  管理学门类的农林经济管理一级学科中对数学要求较高的二级学科、专业。

  总之,考研数学中数学一、数学二、数学三,是根据各领域的不同所设置的,其难易程度也不好做对比。相信同学们只要认真复*,在2015考研中定会取得满意的成绩!

 

13年考研数学大纲:

数一大纲
考试科目
高等数学、线性代数、概率论与数理统计
考试形式和试卷结构
一、试卷满分及考试时间
试卷满分为150分,考试时间为180分钟.
二、答题方式
答题方式为闭卷、笔试.
三、试卷内容结构
高等数学  56%
线性代数  22%
概率论与数理统计[5]22%
四、试卷题型结构
试卷题型结构为:
单选题 8*题,每题4分,共32分
填空题 6*题,每题4分,共24分
解答题(包括证明题) 9*题,共94分
考试内容之高等数学
函数、极限、连续
考试要求
1.理解函数的概念
2.了解函数的有界性、单调性、周期性和奇偶性.
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.
4.掌握基本初等函数的性质及其图形,了解初等函数的概念.
5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.
6.掌握极限的性质及四则运算法则.
7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.
8.理解无穷*量、无穷大量的概念,掌握无穷*量的比较方法,会用等价无穷*量求极限.
9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.
10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最*值定理、介值定理),并会应用这些性质.
一元函数微分学
考试要求
1.理解导数和微分的概念,理解导数与微分的关系,理解函数的可导性与连续性之间的关系.
2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.
3.了解高阶导数的概念,会求简单函数的高阶导数.
4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.
5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.
6.掌握用洛必达法则求未定式极限的方法.
7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最*值的求法及其应用.
8.会用导数判断函数图形的凹凸性(注:在区间 内,设函数 具有二阶导数。当 时, 的图形是凹的;当 时, 的图形是凸的),会求函数图形的拐点以及水*、铅直和斜渐*线,会描绘函数的图形.
9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.
一元函数积分学
考试要求
1.理解原函数的概念,理解不定积分和定积分的概念.
2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.
3.会求有理函数、三角函数有理式和简单无理函数的积分.
4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.
5.了解反常积分的概念,会计算反常积分.
6.掌握用定积分表达和计算一些几何量与物理量(*面图形的面积、*面曲线的弧长、旋转体的体积及侧面积、*行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的*均值.
向量代数和空间解析几何
考试要求
1.理解空间直角坐标系,理解向量的概念及其表示.
2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、*行的条件.
3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.
4.掌握*面方程和直线方程及其求法.
5.会求*面与*面、*面与直线、直线与直线之间的夹角,并会利用*面、直线的相互关系(*行、垂直、相交等)解决有关问题.
6.会求点到直线以及点到*面的距离.
7.了解曲面方程和空间曲线方程的概念.
8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.
9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标*面上的投影,并会求该投影曲线的方程.
多元函数微分学
考试要求
1.理解多元函数的概念,理解二元函数的几何意义.
2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.
3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.
4.理解方向导数与梯度的概念,并掌握其计算方法.
5.掌握多元复合函数一阶、二阶偏导数的求法.
6.了解隐函数存在定理,会求多元隐函数的偏导数.
7.了解空间曲线的切线和法*面及曲面的切*面和法线的概念,会求它们的方程.
8.了解二元函数的二阶泰勒公式.
9.理解多元函数极值和条件极值的概念,并会解决一些简单的应用问题.
多元函数积分学
考试要求
1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理.
2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).
3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.
4.掌握计算两类曲线积分的方法.
5.掌握格林公式并会运用*面曲线积分与路径无关的条件,会求二元函数全微分的原函数.
6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.
7.了解散度与旋度的概念,并会计算.
8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(*面图形的面积、体积、曲面面积、弧长、质量、质心、、形心、转动惯量、引力、功及流量等).
无穷级数
考试要求
1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.
2.掌握几何级数与 级数的收敛与发散的条件.
3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.
4.掌握交错级数的莱布尼茨判别法.
5. 了解任意项级数绝对收敛与条件收敛的概念
6.了解函数项级数的收敛域及和函数的概念.
7.理解幂级数收敛半径的概念、并掌握幂级数的收敛半径、收敛区间及收敛域的求法.
8.会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.
9.了解函数展开为泰勒级数的充分必要条件.
10.掌握麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开成幂级数.
11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在 上的函数展开为傅里叶级数,会将定义在 上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.
常微分方程
考试要求
1.了解微分方程及其阶、解、通解、初始条件和特解等概念.
2.掌握变量可分离的微分方程及一阶线性微分方程的解法.
3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.
4.会用降阶法解下列形式的微分方程: .
5.理解线性微分方程解的性质及解的结构.
6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.
7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.
8.会解欧拉方程.
9.会用微分方程解决一些简单的应用问题.
考试内容之线性代数
行列式
考试内容:行列式的概念和基本性质 行列式按行(列)展开定理
考试要求:
1.了解行列式的概念,掌握行列式的性质.
2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.
矩阵
考试内容:矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵矩阵的秩 矩阵的等价 分块矩阵及其运算
考试要求
1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵,以及它们的性质.
2.理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.
3.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.
4.了解分块矩阵及其运算.
向量
考试内容
向量的概念 向量的线性组合与线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量空间及其相关概念 维向量空间的基变换和坐标变换 过渡矩阵 向量的内积 线性无关向量组的正交规范化方法 规范正交基 正交矩阵及其性质
考试要求
1.理解 维向量、向量的线性组合与线性表示的概念.
2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.
3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.
4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.
5.了解 维向量空间、子空间、基底、维数、坐标等概念.
6.了解基变换和坐标变换公式,会求过渡矩阵.
7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.
8.了解规范正交基、正交矩阵的概念以及它们的性质.
线性方程组
考试内容:线性方程组的克莱姆(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件解空间 非齐次线性方程组的通解
考试要求
l.会用克莱姆法则.
2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.
3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.
4.理解非齐次线性方程组解的结构及通解的概念.
5.掌握用初等行变换求解线性方程组的方法.
矩阵的特征值和特征向量
考试内容:矩阵的特征值和特征向量的概念、性质 相似变换、相似矩阵的概念及性质
考试要求
1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.
2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.
3.掌握实对称矩阵的特征值和特征向量的性质.
二次型
考试内容:二次型及其矩阵表示 合同变换与合同矩阵二次型的秩 惯性定理 二次型的标准形和规范形 用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性
考试要求
1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理.
2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.
3.理解正定二次型、正定矩阵的概念,并掌握其判别法
考试内容之概率论与数理统计
随机事件和概率
考试内容:随机事件与样本空间 事件的关系与运算 完备事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验
考试要求
1.了解样本空间(基本事件空间)的概念
2.掌握概率的加法公式、减法公式、乘法公式、全概率公式,以及贝叶斯(Bayes)公式.
3.理解事件独立性的概念
随机变量及其分布
考试内容:随机变量 随机变量分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布
考试要求
1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率.
2.了解泊松定理的结论和应用条件,会用泊松分布*似表示二项分布.
3.理解连续型随机变量及其概率密度的概念,掌握均匀分布 、正态分布 、指数分布及其应用,其中参数为 的指数分布 的概率密度为
4.会求随机变量函数的分布.
多维随机变量及其分布
考试内容:多维随机变量及其分布 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度 随机变量的独立性和不相关性 常用二维随机变量的分布 两个及两个以上随机变量简单函数的分布
考试要求
1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质. 理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率.
2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.
3.掌握二维均匀分布,了解二维正态分布 的概率密度,理解其中参数的概率意义.
4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.
随机变量的数字特征
考试内容:随机变量的数学期望(均值)、方差、标准差及其性质 随机变量函数的数学期望 矩、协方差、相关系数及其性质
考试要求
1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.
2.会求随机变量函数的数学期望.
大数定律和中心极限定理
考试内容:切比雪夫(Chebyshev)不等式 切比雪夫大数定律 伯努利(Bernoulli)大数定律 辛钦(Khinchine)大数定律 棣莫弗-拉普拉斯(De Moivre-laplace)定理 列维-林德伯格(Levy-Lindberg)定理
考试要求
1.了解切比雪夫不等式.
2.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理).
数理统计的基本概念
考试内容:总体 个体 简单随机样本 统计量 样本均值 样本方差和样本矩 分布 分布 分布 分位数 正态总体的常用抽样分布
考试要求
1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为:
2.了解 分布、 分布和 分布的概念及性质,了解上侧 分位数的概念并会查表计算.
3.了解正态总体的常用抽样分布.
参数估计
考试内容:点估计的概念 估计量与估计值 矩估计法 最大似然估计法 估计量的评选标准 区间估计的概念 单个正态总体的均值和方差的区间估计 两个正态总体的均值差和方差比的区间估计
考试要求
1.理解参数的点估计、估计量与估计值的概念.
2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.
3.了解估计量的无偏性、有效性(最*方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.
4、理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间.
假设检验
考试内容:显著性检验 假设检验的两类错误 单个及两个正态总体的均值和方差的假设检验
考试要求
1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误。
2.掌握单个及两个正态总体的均值和方差的假设检验。
编辑本段数二大纲
考试科目
高等数学、线性代数
考试形式和试卷结构
1、试卷满分及考试时间
试卷满分为150分,考试时间为180分钟。
2、答题方式
答题方式为闭卷、笔试。
3、试卷内容结构
高等数学 78%
线性代数  22%
4、试卷题型结构
试卷题型结构为:
单项选择题选题 8*题,每题4分,共32分
填空题 6*题,每题4分,共24分
解答题(包括证明题) 9*题,共94分
考试内容之高等数学
函数、极限、连续
考试内容:函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷*量和无穷大量的概念及其关系 无穷*量的性质及无穷*量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:
函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质
考试要求
1. 理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.
2. 了解函数的有界性、单调性、周期性和奇偶性.
3. 理解复合函数及分段函数的概念了解反函数及隐函数的概念
4. 掌握基本初等函数的性质及其图形,了解初等函数的概念.
5. 理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.
6. 掌握极限的性质及四则运算法则
7. 掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.
8. 理解无穷*量、无穷大量的概念,掌握无穷*量的比较方法,会用等价无穷*量求极限.
9. 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.
10. 了解连续函数的性质和初等函数一的连续性,理解闭区间上连续函数的性质(有界性、最大值和最*值定理、介值定理),并会应用这些性质.
一元函数微分学
考试要求
1. 理解导数和微分的概念,理解导数和微分的关系,理解函数的可导性与连续性之间的关系.
2. 掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.
3. 了解高阶导数的概念,会求简单函数的高阶导数.
4. 会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.
5. 理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西( Cauchy )中值定理.
6. 掌握用洛必达法刚求未定式极限的方法.
7. 理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最*值的求法及其应用.
8. 会用导数判断函数图形的凹凸性(注:在区间(a,b)内,设函数f(x)具有二阶导数。当 >0时,f(x)的图形是凹的;当 <0时,f(x)的图形是凸的),会求函数图形的拐点以及水*、铅直和斜渐*线,会描绘函数的图形.
9. 了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径.
一元函数积分学
考试内容:原函数和不定积分的概念 不定积分的基本性质 基本积分公式定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿-莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分 定积分的应用
考试要求
1. 理解原函数的概念,理解不定积分和定积分的概念.
2. 掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法
3. 会求有理函数、三角函数有理式和简单无理函数的积分.
4. 理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式.
5. 了解反常积分的概念,会计算反常积分.
6. 掌握用定积分表达和计算一些几何量与物理量(*面图形的面积、*面曲线的弧长、旋转体的体积及侧面积、*行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的*均值.
多元函数微积分学
考试要求
1. 了解多元函数的概念,了解二元函数的几何意义.
2. 了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.
3. 了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.
4. 了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最*值,并求解一些简单的应用问题.
5. 了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标).
常微分方程
考试内容:常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程 微分方程的简单应用
考试要求
1. 了解微分方程及其阶、解、通解、初始条件和特解等概念.
2. 掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程
3. 会用降阶法解下列形式的微分方程: , 和 .
4. 理解二阶线性微分方程解的性质及解的结构定理.
5. 掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.
6. 会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.
7. 会用微分方程解决一些简单的应用问题.
考试内容之线性代数
行列式
考试内容:行列式的概念和基本性质 行列式按行(列)展开定理
考试要求
1.了解行列式的概念,掌握行列式的性质.
2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.
矩阵
考试内容:矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价分块矩阵及其运算
考试要求
1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵和正交矩阵以及它们的性质.
2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.
3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件.理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.
4.了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法. 5.了解分块矩阵及其运算.
向量
考试内容:向量的概念 向量的线性组合和线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量的内积 线性无关向量组的正交规范化方法
考试要求
1.理解n维向量、向量的线性组合与线性表示的概念.
2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.
3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.
4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系
5.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.
线性方程组
考试内容:线性方程组的克莱姆(Cramer)法则 齐次线性方程组有非零解的充分必要条件 非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方程组的基础解系和通解 非齐次线性方程组的通解
考试要求
1.会用克莱姆法则.
2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.
3.理解齐次线性方程组的基础解系及通解的概念,掌握齐次线性方程组的基础解系和通解的求法.
4.理解非齐次线性方程组的解的结构及通解的概念.
5.会用初等行变换求解线性方程组.
矩阵的特征值和特征向量
考试内容:矩阵的特征值和特征向量的概念、性质 相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值、特征向量及其相似对角矩阵
考试要求
1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.
2.理解矩阵相似的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵.
3.理解实对称矩阵的特征值和特征向量的性质.
二次型
考试内容:二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准形和规范形用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性
考试要求
1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.
2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.
3.理解正定二次型、正定矩阵的概念,并掌握其判别法.
编辑本段数三大纲
考试科目
微积分、线性代数、概率论与数理统计
考试形式和试卷结构
1、试卷满分及考试时间
试卷满分为150分,考试时间为180分钟.
2、答题方式
答题方式为闭卷、笔试.
3、试卷内容结构
微积分 56%
线性代数 22%
概率论与数理统计 22%
4、试卷题型结构
试卷题型结构为:
单项选择题选题8*题,每题4分,共32分
填空题 6*题,每题4分,共24分
解答题(包括证明题) 9*题,共94分

4、408计算机学科专业基础综合
 
全国统考。数据结构,组成原理,计算机网络,操作系统 四门课合出一张卷子,共150分,其中数据结构和组成原理各占45分,操作系统占35分,计算机网络占25分
 
复旦大学408计算机学科专业基础综合考研真题:http://www.kaofudan.com/zt/408jisuanjixuekezhuanyejichuzonghe/
综合参考教材:http://wenku.baidu.com/link?url=cN6p-LxD_tervMJB8QyH_HRpYcetFNLv2N4Me_5bq9BY7uMc-Cv1HyD9mQvUvAIeztJ8i3uQAb4CnWNDFjT0zDwFfJr8P9pySmiWsCBgz_7
网上大多数的意见都是尽量消化教材,然后找点资料练练手。听说每年的题目变化很大,建议通过教材巩固基础。
摘自别人的博客:
计算机专业的专业课现在都是统考代码408,考研科目是计算机学科专业基础综合,包含计算机组成原理、数据结构、操作系统计算机网络。从每年的试题来看,风格都完全不一样,不深入理解计算机系统是很难考出好成绩的。所以你得尽早复*计算机的专业课。每年的真题都非常的灵活,所以要抓住课本,真正理解知识点,把手中的复*资料充分利用。你可以*时将此四门课学扎实,同时还要好好学C语言程序设计(有助于复试)。编程的能力和算法的思想一定是要有的。指定教材课本有严蔚敏的数据结构、白中英的计算机组成、西安电子科技大的操作系统谢希仁的网络。 到复*时可以买考研辅导机构出版的计算机综合辅导教材和真题试卷。

比较好的资料有王道论坛的单科书和全书。天勤论坛的高分笔记,这个高分笔记不错,但是关于操作系统的那块差了些。最后的模拟题有王道和天勤的,至于其他的资料难度都太低了。真题每年考得都比较灵活,所以要抓住课本,真正理解知识点,把手中的复*资料充分利用起来。计算机考研论坛中的王道论坛上面有很多参考书目推荐和经验总结,希望你去看一看。
摘自别人的博客:
计算机学科专业基础的考试内容包括:数据结构、计算机组成原理、操作系统和计算机网络
《数据结构》(C语言版) (严蔚敏 清华大学出版社)
《计算机组成与设计》(王诚等 清华大学出版社)的复*。
《计算机操作系统》(汤子瀛 西安电子科技大学)
计算机网络》(谢希仁 电子工业出版社)
复旦大学2015年硕士招生专业目录——081203计算机应用技术:
http://www.100exam.com/WebSpecF/EnrolDetail.aspx?id=118717

 






posted @ 2015-09-06 19:36  Run_For_Love  阅读(340)  评论(0编辑  收藏  举报