【python / mxnet / gluoncv / jupyter notebook】变换场景的同一行人多重识别

程序环境为高性能集群:
CPU:Intel Xeon Gold 6140 Processor * 2(共36核心)
内存:512GB RAM
GPU:Tesla P100-PCIE-16GB * 2

 

 

数据集和源代码可以在此处获得

tutorials:https://github.com/wnm1503303791/pycode/tree/master/gluoncv/re-id/baseline

In [ ]:
#market1501.py
#!/usr/bin/env python
# -*- coding: utf-8 -*-

from __future__ import print_function, division
import json, os
from os import path as osp
from zipfile import ZipFile
from gluoncv.utils import download


def extract(fpath, exdir):
    print("Extracting zip file")
    with ZipFile(fpath) as z:
        z.extractall(path=exdir)
    print("Extracting Done")

def make_list(exdir):
    train_dir = osp.join(exdir, "bounding_box_train")
    train_list = {}
    for _, _, files in os.walk(train_dir, topdown=False):
        for name in files:
            if '.jpg' in name:
                name_split = name.split('_')
                pid = name_split[0]
                pcam = name_split[1][1]
                if pid not in train_list:
                    train_list[pid] = []
                train_list[pid].append({"name":name, "pid":pid, "pcam":pcam})


    with open(osp.join(exdir, 'train.txt'), 'w') as f:
        for i, key in enumerate(train_list):
            for item in train_list[key]:
                f.write(item['name']+" "+str(i)+" "+item["pcam"]+"\n")
    print("Make Label List Done")


def main():
    name = "Market-1501-v15.09.15"
    url = "http://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/gluon/dataset/"+name+".zip"
    root = osp.expanduser("~/.mxnet/datasets")
    if not os.path.exists(root):
        os.mkdir(root)
    fpath = osp.join(root, name+'.zip')
    exdir = osp.join(root, name)

    if os.path.exists(fpath):
        if not osp.isdir(exdir):
            extract(fpath, root)
            make_list(exdir)
            
    else:
        download(url, fpath, False)
        extract(fpath, root)
        make_list(exdir)


if __name__ == '__main__':
    main()
In [5]:
! python market1501.py
In [ ]:
#train.py
from __future__ import division

import argparse, datetime, os
import logging
logging.basicConfig(level=logging.INFO)

import mxnet as mx
from mxnet import gluon, nd
from mxnet.gluon.model_zoo import vision as models
from mxnet.gluon.data.vision import transforms
from mxnet import autograd

from networks import resnet18, resnet34, resnet50
from gluoncv.data.market1501.data_read import ImageTxtDataset
from gluoncv.data.market1501.label_read import LabelList
from gluoncv.data.transforms.block import RandomCrop



# CLI
parser = argparse.ArgumentParser(description='Train a model for image classification.')
parser.add_argument('--img-height', type=int, default=384,
                    help='the height of image for input')
parser.add_argument('--img-width', type=int, default=128,
                    help='the width of image for input')
parser.add_argument('--batch-size', type=int, default=32,
                    help='training batch size per device (CPU/GPU).')
parser.add_argument('--num-workers', type=int, default=8,
                    help='the number of workers for data loader')
parser.add_argument('--dataset-root', type=str, default="~/.mxnet/datasets",
                    help='the number of workers for data loader')
parser.add_argument('--dataset', type=str, default="market1501",
                    help='the number of workers for data loader')
parser.add_argument('--num-gpus', type=int, default=1,
                    help='number of gpus to use.')
parser.add_argument('--warmup', type=bool, default=True,
                    help='number of training epochs.')
parser.add_argument('--epochs', type=str, default="5,25,50,75")
parser.add_argument('--ratio', type=float, default=1.,
                    help="ratio of training set to all set")
parser.add_argument('--pad', type=int, default=10)
parser.add_argument('--lr', type=float, default=3.5e-4,
                    help='learning rate. default is 0.1.')
parser.add_argument('-momentum', type=float, default=0.9,
                    help='momentum value for optimizer, default is 0.9.')
parser.add_argument('--wd', type=float, default=5e-4,
                    help='weight decay rate. default is 5e-4.')
parser.add_argument('--seed', type=int, default=613,
                    help='random seed to use. Default=613.')
parser.add_argument('--lr-decay', type=int, default=0.1)
parser.add_argument('--hybridize', type=bool, default=True)


def get_data_iters(batch_size):
    train_set, val_set = LabelList(ratio=opt.ratio, root=opt.dataset_root, name=opt.dataset)

    normalizer = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])

    transform_train = transforms.Compose([
        transforms.Resize(size=(opt.img_width, opt.img_height), interpolation=1),
        transforms.RandomFlipLeftRight(),
        RandomCrop(size=(opt.img_width, opt.img_height), pad=opt.pad),
        transforms.ToTensor(),
        normalizer])

    train_imgs = ImageTxtDataset(train_set, transform=transform_train)
    train_data = gluon.data.DataLoader(train_imgs, batch_size, shuffle=True, last_batch='discard', num_workers=opt.num_workers)

    if opt.ratio < 1:
        transform_test = transforms.Compose([
            transforms.Resize(size=(opt.img_width, opt.img_height), interpolation=1),
            transforms.ToTensor(),
            normalizer])
            
        val_imgs = ImageTxtDataset(val_set, transform=transform_test)
        val_data = gluon.data.DataLoader(val_imgs, batch_size, shuffle=True, last_batch='discard', num_workers=opt.num_workers)
    else:
        val_data = None

    return train_data, val_data


def validate(val_data, net, criterion, ctx):
    loss = 0.0
    for data, label in val_data:
        data_list = gluon.utils.split_and_load(data, ctx)
        label_list = gluon.utils.split_and_load(label, ctx)

        with autograd.predict_mode():
            outpus = [net(X) for X in data_list]
            losses = [criterion(X, y) for X, y in zip(outpus, label_list)]
        accuracy = [(X.argmax(axis=1)==y.astype('float32')).mean.asscalar() for X, y in zip(outpus, label_list)]

        loss_list = [l.mean().asscalar() for l in losses]
        loss += sum(loss_list) / len(loss_list)

    return loss/len(val_data), sum(accuracy)/len(accuracy)


def main(net, batch_size, epochs, opt, ctx):
    train_data, val_data = get_data_iters(batch_size)
    if opt.hybridize:
        net.hybridize()

    trainer = gluon.Trainer(net.collect_params(), 'adam', {'learning_rate': opt.lr, 'wd': opt.wd})
    criterion = gluon.loss.SoftmaxCrossEntropyLoss()

    lr = opt.lr
    if opt.warmup:
        minlr = lr*0.01
        dlr = (lr-minlr)/(epochs[0]-1)

    prev_time = datetime.datetime.now()
    for epoch in range(epochs[-1]):
        _loss = 0.
        if opt.warmup:
            if epoch<epochs[0]:
                lr = minlr + dlr*epoch
        if epoch in epochs[1:]:
            lr = lr * opt.lr_decay
        trainer.set_learning_rate(lr)

        for data, label in train_data:
            data_list = gluon.utils.split_and_load(data, ctx)
            label_list = gluon.utils.split_and_load(label, ctx)
            with autograd.record():
                output = [net(X) for X in data_list]
                losses = [criterion(X, y) for X, y in zip(output, label_list)]

            for l in losses:
                l.backward()
            trainer.step(batch_size)
            _loss_list = [l.mean().asscalar() for l in losses]
            _loss += sum(_loss_list) / len(_loss_list)

        cur_time = datetime.datetime.now()
        h, remainder = divmod((cur_time - prev_time).seconds, 3600)
        m, s = divmod(remainder, 60)
        time_str = "Time %02d:%02d:%02d" % (h, m, s)
        __loss = _loss/len(train_data)

        if val_data is not None:
            val_loss, val_accuracy = validate(val_data, net, criterion, ctx)
            epoch_str = ("Epoch %d. Train loss: %f, Val loss %f, Val accuracy %f, " % (epoch, __loss , val_loss, val_accuracy))
        else:
            epoch_str = ("Epoch %d. Train loss: %f, " % (epoch, __loss))

        prev_time = cur_time
        print(epoch_str + time_str + ', lr ' + str(trainer.learning_rate))

    if not os.path.exists("params"):
        os.mkdir("params")
    net.save_parameters("params/resnet50.params")


if __name__ == '__main__':
    opt = parser.parse_args()
    logging.info(opt)
    mx.random.seed(opt.seed)

    batch_size = opt.batch_size
    num_gpus = opt.num_gpus
    epochs = [int(i) for i in opt.epochs.split(',')]
    batch_size *= max(1, num_gpus)

    context = [mx.gpu(i) for i in range(num_gpus)]
    net = resnet50(ctx=context, num_classes=751)
    main(net, batch_size, epochs, opt, context)
In [7]:
!pwd
 
/public/home/ztu/code/git/pycode/gluoncv/re-id
In [8]:
!nvidia-smi -L
 
GPU 0: Tesla P100-PCIE-16GB (UUID: GPU-1251aff4-dcda-c142-af7f-c19a67ed88df)
GPU 1: Tesla P100-PCIE-16GB (UUID: GPU-ae5cde47-bf7f-a6c6-8a68-8a3c96b2dadf)
In [9]:
!nvidia-smi
 
Tue Oct 22 16:15:17 2019       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 396.37                 Driver Version: 396.37                    |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  Tesla P100-PCIE...  Off  | 00000000:2F:00.0 Off |                    0 |
| N/A   48C    P0    32W / 250W |      0MiB / 16280MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
|   1  Tesla P100-PCIE...  Off  | 00000000:86:00.0 Off |                    0 |
| N/A   43C    P0    33W / 250W |      0MiB / 16280MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
                                                                               
+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID   Type   Process name                             Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+
In [10]:
!CUDA_VISIBLE_DEVICES=1 python baseline/train.py
 
INFO:root:Namespace(batch_size=32, dataset='market1501', dataset_root='~/.mxnet/datasets', epochs='5,25,50,75', hybridize=True, img_height=384, img_width=128, lr=0.00035, lr_decay=0.1, momentum=0.9, num_gpus=1, num_workers=8, pad=10, ratio=1.0, seed=613, warmup=True, wd=0.0005)
[16:15:34] src/operator/nn/./cudnn/./cudnn_algoreg-inl.h:97: Running performance tests to find the best convolution algorithm, this can take a while... (set the environment variable MXNET_CUDNN_AUTOTUNE_DEFAULT to 0 to disable)
Epoch 0. Train loss: 6.597217, Time 00:01:38, lr 3.5e-06
Epoch 1. Train loss: 4.248931, Time 00:01:32, lr 9.012500000000001e-05
^C
Process ForkPoolWorker-7:
Process ForkPoolWorker-2:
Process ForkPoolWorker-5:
Process ForkPoolWorker-6:
Process ForkPoolWorker-3:
Traceback (most recent call last):
  File "/public/home/ztu/app/anaconda3/envs/gluoncv/lib/python3.6/multiprocessing/process.py", line 258, in _bootstrap
    self.run()
  File "/public/home/ztu/app/anaconda3/envs/gluoncv/lib/python3.6/multiprocessing/process.py", line 93, in run
    self._target(*self._args, **self._kwargs)
  File "/public/home/ztu/app/anaconda3/envs/gluoncv/lib/python3.6/multiprocessing/pool.py", line 108, in worker
    task = get()
  File "/public/home/ztu/app/anaconda3/envs/gluoncv/lib/python3.6/multiprocessing/queues.py", line 334, in get
    with self._rlock:
  File "/public/home/ztu/app/anaconda3/envs/gluoncv/lib/python3.6/multiprocessing/synchronize.py", line 95, in __enter__
    return self._semlock.__enter__()
KeyboardInterrupt
Process ForkPoolWorker-4:
Process ForkPoolWorker-1:
Traceback (most recent call last):
Process ForkPoolWorker-8:
  File "/public/home/ztu/app/anaconda3/envs/gluoncv/lib/python3.6/multiprocessing/process.py", line 258, in _bootstrap
    self.run()
  File "/public/home/ztu/app/anaconda3/envs/gluoncv/lib/python3.6/multiprocessing/process.py", line 93, in run
    self._target(*self._args, **self._kwargs)
  File "/public/home/ztu/app/anaconda3/envs/gluoncv/lib/python3.6/multiprocessing/pool.py", line 108, in worker
    task = get()
  File "/public/home/ztu/app/anaconda3/envs/gluoncv/lib/python3.6/multiprocessing/queues.py", line 334, in get
    with self._rlock:
  File "/public/home/ztu/app/anaconda3/envs/gluoncv/lib/python3.6/multiprocessing/synchronize.py", line 95, in __enter__
    return self._semlock.__enter__()
KeyboardInterrupt
Traceback (most recent call last):
  File "/public/home/ztu/app/anaconda3/envs/gluoncv/lib/python3.6/multiprocessing/process.py", line 258, in _bootstrap
    self.run()
  File "/public/home/ztu/app/anaconda3/envs/gluoncv/lib/python3.6/multiprocessing/process.py", line 93, in run
    self._target(*self._args, **self._kwargs)
  File "/public/home/ztu/app/anaconda3/envs/gluoncv/lib/python3.6/multiprocessing/pool.py", line 108, in worker
    task = get()
  File "/public/home/ztu/app/anaconda3/envs/gluoncv/lib/python3.6/multiprocessing/queues.py", line 334, in get
    with self._rlock:
  File "/public/home/ztu/app/anaconda3/envs/gluoncv/lib/python3.6/multiprocessing/synchronize.py", line 95, in __enter__
    return self._semlock.__enter__()
Traceback (most recent call last):
KeyboardInterrupt
  File "/public/home/ztu/app/anaconda3/envs/gluoncv/lib/python3.6/multiprocessing/process.py", line 258, in _bootstrap
    self.run()
  File "/public/home/ztu/app/anaconda3/envs/gluoncv/lib/python3.6/multiprocessing/process.py", line 93, in run
    self._target(*self._args, **self._kwargs)
  File "/public/home/ztu/app/anaconda3/envs/gluoncv/lib/python3.6/multiprocessing/pool.py", line 108, in worker
    task = get()
  File "/public/home/ztu/app/anaconda3/envs/gluoncv/lib/python3.6/multiprocessing/queues.py", line 335, in get
    res = self._reader.recv_bytes()
  File "/public/home/ztu/app/anaconda3/envs/gluoncv/lib/python3.6/multiprocessing/connection.py", line 216, in recv_bytes
    buf = self._recv_bytes(maxlength)
  File "/public/home/ztu/app/anaconda3/envs/gluoncv/lib/python3.6/multiprocessing/connection.py", line 407, in _recv_bytes
    buf = self._recv(4)
  File "/public/home/ztu/app/anaconda3/envs/gluoncv/lib/python3.6/multiprocessing/connection.py", line 379, in _recv
    chunk = read(handle, remaining)
KeyboardInterrupt
Traceback (most recent call last):
  File "/public/home/ztu/app/anaconda3/envs/gluoncv/lib/python3.6/multiprocessing/process.py", line 258, in _bootstrap
    self.run()
  File "/public/home/ztu/app/anaconda3/envs/gluoncv/lib/python3.6/multiprocessing/process.py", line 93, in run
    self._target(*self._args, **self._kwargs)
  File "/public/home/ztu/app/anaconda3/envs/gluoncv/lib/python3.6/multiprocessing/pool.py", line 108, in worker
    task = get()
  File "/public/home/ztu/app/anaconda3/envs/gluoncv/lib/python3.6/multiprocessing/queues.py", line 334, in get
    with self._rlock:
  File "/public/home/ztu/app/anaconda3/envs/gluoncv/lib/python3.6/multiprocessing/synchronize.py", line 95, in __enter__
    return self._semlock.__enter__()
KeyboardInterrupt
Traceback (most recent call last):
Traceback (most recent call last):
Traceback (most recent call last):
  File "/public/home/ztu/app/anaconda3/envs/gluoncv/lib/python3.6/multiprocessing/process.py", line 258, in _bootstrap
    self.run()
  File "/public/home/ztu/app/anaconda3/envs/gluoncv/lib/python3.6/multiprocessing/process.py", line 258, in _bootstrap
    self.run()
  File "/public/home/ztu/app/anaconda3/envs/gluoncv/lib/python3.6/multiprocessing/process.py", line 258, in _bootstrap
    self.run()
  File "/public/home/ztu/app/anaconda3/envs/gluoncv/lib/python3.6/multiprocessing/process.py", line 93, in run
    self._target(*self._args, **self._kwargs)
  File "/public/home/ztu/app/anaconda3/envs/gluoncv/lib/python3.6/multiprocessing/process.py", line 93, in run
    self._target(*self._args, **self._kwargs)
  File "/public/home/ztu/app/anaconda3/envs/gluoncv/lib/python3.6/multiprocessing/process.py", line 93, in run
    self._target(*self._args, **self._kwargs)
  File "/public/home/ztu/app/anaconda3/envs/gluoncv/lib/python3.6/multiprocessing/pool.py", line 108, in worker
    task = get()
  File "/public/home/ztu/app/anaconda3/envs/gluoncv/lib/python3.6/multiprocessing/pool.py", line 108, in worker
    task = get()
  File "/public/home/ztu/app/anaconda3/envs/gluoncv/lib/python3.6/multiprocessing/pool.py", line 108, in worker
    task = get()
  File "/public/home/ztu/app/anaconda3/envs/gluoncv/lib/python3.6/multiprocessing/queues.py", line 334, in get
    with self._rlock:
  File "/public/home/ztu/app/anaconda3/envs/gluoncv/lib/python3.6/multiprocessing/queues.py", line 334, in get
    with self._rlock:
  File "/public/home/ztu/app/anaconda3/envs/gluoncv/lib/python3.6/multiprocessing/queues.py", line 334, in get
    with self._rlock:
  File "/public/home/ztu/app/anaconda3/envs/gluoncv/lib/python3.6/multiprocessing/synchronize.py", line 95, in __enter__
    return self._semlock.__enter__()
  File "/public/home/ztu/app/anaconda3/envs/gluoncv/lib/python3.6/multiprocessing/synchronize.py", line 95, in __enter__
    return self._semlock.__enter__()
  File "/public/home/ztu/app/anaconda3/envs/gluoncv/lib/python3.6/multiprocessing/synchronize.py", line 95, in __enter__
    return self._semlock.__enter__()
KeyboardInterrupt
KeyboardInterrupt
KeyboardInterrupt
Traceback (most recent call last):
  File "baseline/train.py", line 168, in <module>
    main(net, batch_size, epochs, opt, context)
  File "baseline/train.py", line 133, in main
    _loss_list = [l.mean().asscalar() for l in losses]
  File "baseline/train.py", line 133, in <listcomp>
    _loss_list = [l.mean().asscalar() for l in losses]
  File "/public/home/ztu/app/anaconda3/envs/gluoncv/lib/python3.6/site-packages/mxnet/ndarray/ndarray.py", line 2014, in asscalar
    return self.asnumpy()[0]
  File "/public/home/ztu/app/anaconda3/envs/gluoncv/lib/python3.6/site-packages/mxnet/ndarray/ndarray.py", line 1996, in asnumpy
    ctypes.c_size_t(data.size)))
KeyboardInterrupt
 

其实我早就训练好了...

所以就省略gpu跑训练代码的输出过程

下面直接上测试代码吧

In [ ]:
#test.py
# -*- coding: utf-8 -*-
from __future__ import print_function, division

import mxnet as mx
import numpy as np
from mxnet import gluon, nd
from mxnet.gluon import nn
from mxnet.gluon.data.vision import transforms

from networks import resnet18, resnet34, resnet50
from gluoncv.data.market1501.data_read import ImageTxtDataset

import time, os, sys
import scipy.io as sio
from os import path as osp

def get_data(batch_size, test_set, query_set):
    normalizer = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])

    transform_test = transforms.Compose([
        transforms.Resize(size=(128, 384), interpolation=1),
        transforms.ToTensor(),
        normalizer])

    test_imgs = ImageTxtDataset(test_set, transform=transform_test)
    query_imgs = ImageTxtDataset(query_set, transform=transform_test)

    test_data = gluon.data.DataLoader(test_imgs, batch_size, shuffle=False, last_batch='keep', num_workers=8)
    query_data = gluon.data.DataLoader(query_imgs, batch_size, shuffle=False, last_batch='keep', num_workers=8)
    return test_data, query_data


def load_network(network, ctx):
    network.load_parameters('params/resnet50.params', ctx=ctx, allow_missing=True, ignore_extra=True)
    return network


def fliplr(img):
    '''flip horizontal'''
    img_flip = nd.flip(img, axis=3)
    return img_flip


def extract_feature(model, dataloaders, ctx):
    count = 0
    features = []
    for img, _ in dataloaders:
        n = img.shape[0]
        count += n
        print(count)
        ff = np.zeros((n, 2048))
        for i in range(2):
            if(i==1):
                img = fliplr(img)
            f = model(img.as_in_context(ctx)).as_in_context(mx.cpu()).asnumpy()
            ff = ff+f
        features.append(ff)
    features = np.concatenate(features)
    return features/np.linalg.norm(features, axis=1, keepdims=True)


def get_id(img_path):
    cameras = []
    labels = []
    for path in img_path:
        cameras.append(int(path[0].split('/')[-1].split('_')[1][1]))
        labels.append(path[1])
    return np.array(cameras), np.array(labels)


def compute_mAP(index, good_index, junk_index):
    ap = 0
    cmc = np.zeros(len(index))
    if good_index.size==0:   # if empty
        cmc[0] = -1
        return ap,cmc

    # remove junk_index
    mask = np.in1d(index, junk_index, invert=True)
    index = index[mask]

    # find good_index index
    ngood = len(good_index)
    mask = np.in1d(index, good_index)
    rows_good = np.argwhere(mask==True)
    rows_good = rows_good.flatten()
    
    cmc[rows_good[0]:] = 1
    for i in range(ngood):
        d_recall = 1.0/ngood
        precision = (i+1)*1.0/(rows_good[i]+1)
        if rows_good[i]!=0:
            old_precision = i*1.0/rows_good[i]
        else:
            old_precision=1.0
        ap = ap + d_recall*(old_precision + precision)/2

    return ap, cmc


if __name__ == '__main__':
    batch_size = 256
    data_dir = osp.expanduser("~/.mxnet/datasets/Market-1501-v15.09.15/")
    gpu_ids = [0]

    # set gpu ids
    if len(gpu_ids)>0:
        context = mx.gpu()

    test_set = [(osp.join(data_dir,'bounding_box_test',line), int(line.split('_')[0])) for line in os.listdir(data_dir+'bounding_box_test') if "jpg" in line and "-1" not in line]
    query_set = [(osp.join(data_dir,'query',line), int(line.split('_')[0])) for line in os.listdir(data_dir+'query') if "jpg" in line]
    
    test_cam, test_label = get_id(test_set)
    query_cam, query_label = get_id(query_set)

    ######################################################################
    # Load Collected data Trained model
    model_structure = resnet50(ctx=context, pretrained=False)
    model = load_network(model_structure, context)

    # Extract feature
    test_loader, query_loader = get_data(batch_size, test_set, query_set)
    print('start test')
    test_feature = extract_feature(model, test_loader, context)
    print('start query')
    query_feature = extract_feature(model, query_loader, context)


    query_feature = nd.array(query_feature).as_in_context(mx.gpu(0))
    test_feature = nd.array(test_feature).as_in_context(mx.gpu(0))

    num = query_label.size
    dist_all = nd.linalg.gemm2(query_feature, test_feature, transpose_b=True)

    CMC = np.zeros(test_label.size)
    ap = 0.0
    for i in range(num):
        cam = query_cam[i]
        label = query_label[i]
        index = dist_all[i].argsort(is_ascend=False).as_in_context(mx.cpu()).asnumpy().astype("int32")

        query_index = np.argwhere(test_label==label)
        camera_index = np.argwhere(test_cam==cam)

        good_index = np.setdiff1d(query_index, camera_index, assume_unique=True)
        junk_index = np.intersect1d(query_index, camera_index)
    
        ap_tmp, CMC_tmp = compute_mAP(index, good_index, junk_index)
        CMC = CMC + CMC_tmp
        ap += ap_tmp

    CMC = CMC/num #average CMC
    print('top1:%f top5:%f top10:%f mAP:%f'%(CMC[0],CMC[4],CMC[9],ap/num))
In [15]:
!CUDA_VISIBLE_DEVICES=1 python baseline/test.py
 
start test
256
[16:25:25] src/operator/nn/./cudnn/./cudnn_algoreg-inl.h:97: Running performance tests to find the best convolution algorithm, this can take a while... (set the environment variable MXNET_CUDNN_AUTOTUNE_DEFAULT to 0 to disable)
512
768
1024
1280
1536
1792
2048
2304
2560
2816
3072
3328
3584
3840
4096
4352
4608
4864
5120
5376
5632
5888
6144
6400
6656
6912
7168
7424
7680
7936
8192
8448
8704
8960
9216
9472
9728
9984
10240
10496
10752
11008
11264
11520
11776
12032
12288
12544
12800
13056
13312
13568
13824
14080
14336
14592
14848
15104
15360
15616
15872
15913
start query
256
512
768
1024
1280
1536
1792
2048
2304
2560
2816
3072
3328
3368
[16:27:09] src/operator/nn/./cudnn/./cudnn_algoreg-inl.h:97: Running performance tests to find the best convolution algorithm, this can take a while... (set the environment variable MXNET_CUDNN_AUTOTUNE_DEFAULT to 0 to disable)
top1:0.921021 top5:0.971793 top10:0.980701 mAP:0.794266
In [ ]:
 

tz@croplab,HZAU

posted on 2019-10-22 16:34  tuzhuo  阅读(717)  评论(0编辑  收藏  举报