DAG模型——硬币问题
硬币问题
有n种硬币,面值分别为V1,V2,...,Vn,每种都有无限多。给定非负整数S,可以选用多少个硬币,使得面值之和恰好为S?输出硬币数目的最小值和最大值。1<=n<=100, 0<=S<=10000,1<=Vi<=S.
分析:
我们把每种面值看做一个点,表示“还需要凑足的面值”,则初始状态为S,目标状态为0.若当前在状态 i ,每使用一个硬币j ,状态便转移到 i-Vj .
注意到最长路和最短路的求法是类似的,下面只考虑最长路。由于终点固定,d(i)的确切含义变为“从结点i出发到结点0的最长路径长度”
在记忆化搜索中,如果用特殊值表示“还没算过”,则必须将其和其他特殊值(比如无解)区分开。
也可以不用特殊值表示还没算过,而是用另外一个数组vis[i]表示状态i “是否被访问过”
记忆化搜索代码如下:
1 #include<cstdio> 2 #include<cstdlib> 3 #include<algorithm> 4 using namespace std; 5 const int maxn = 102, maxv = 10005; 6 int n, S, v[maxn], mind[maxv], maxd[maxv]; 7 int dp1(int s) //最小值 8 { 9 int &ans = mind[s]; 10 if(ans != -1) return ans; 11 ans = 1<<30; 12 for(int i = 1; i <= n; ++i) if(v[i] <= s) ans = min(ans, dp1(s-v[i])+1); 13 return ans; 14 } 15 int vis[maxv]; 16 int dp2(int s) //最大值 17 { 18 if(vis[s]) return maxd[s]; 19 vis[s] = 1; 20 int &ans = maxd[s]; 21 ans = -1<<30; 22 for(int i = 1; i <= n; ++i) if(s >= v[i]) ans = max(ans, dp2(s-v[i])+1); 23 return ans; 24 } 25 void print_ans(int* d, int s) //打印的是边 26 { 27 for(int i = 1; i <= n; ++i) if(v[i] <= s && d[s-v[i]]+1 ==d[s]) 28 { 29 printf("%d ",i); 30 print_ans(d, s-v[i]); 31 break; 32 } 33 } 34 int main() 35 { 36 freopen("9-3.in", "r", stdin); 37 scanf("%d%d", &n, &S); 38 for(int i = 1; i <= n; ++i) scanf("%d", v+i); 39 memset(mind, -1, sizeof(mind)); 40 mind[0] = 0; 41 printf("%d\n", dp1(S)); 42 print_ans(mind, S); 43 printf("\n"); 44 memset(maxd, -1, sizeof(maxd)); 45 memset(vis, 0, sizeof(vis)); 46 maxd[0] = 0; 47 vis[0] = 1; 48 printf("%d\n", dp2(S)); 49 print_ans(maxd, S); 50 printf("\n"); 51 return 0; 52 }
递推代码如下:
1 #include <cstdio> 2 #include <cstring> 3 const int maxn = 110, maxv = 10086, INF = 1234567890; 4 int v[maxn], S, n, maxf[maxv], minf[maxv], min_coin[maxv], max_coin[maxv]; 5 void print_ans(int *d, int s){ 6 while(s){ 7 printf("%d ", d[s]); 8 s-=v[d[s]]; 9 } 10 } 11 int main(){ 12 freopen("9-3.in", "r", stdin); 13 scanf("%d%d", &n, &S); 14 for(int i = 1; i <= n; ++i) scanf("%d", &v[i]); 15 for(int i = 1; i <= S; ++i) { 16 //最应注意的是边界条件、初始化,因为递推作为重点一般不会写错,就是在这种细节处出错 17 maxf[i] = -INF; 18 minf[i] = INF; 19 } 20 maxf[0] = minf[0] = 0; 21 for(int i = 1; i <= S; ++i) 22 for(int j = 1; j <= n; ++j) if(i >= v[j]){ 23 if(maxf[i-v[j]] + 1 > maxf[i]){ 24 maxf[i] = maxf[i-v[j]] + 1; 25 max_coin[i] = j; 26 } 27 if(minf[i-v[j]] + 1 < minf[i]){ 28 minf[i] = minf[i-v[j]] + 1; 29 min_coin[i] = j; 30 } 31 } 32 printf("%d\n", minf[S]); 33 print_ans(min_coin, S); 34 printf("\n"); 35 printf("%d\n", maxf[S]); 36 print_ans(max_coin, S); 37 printf("\n"); 38 return 0; 39 }
不必打印路径代码:
1 #include<cstdio> 2 #include<cstdlib> 3 const int maxn = 110, maxv = 10086, INF = 123456789; 4 int n, S, v[maxn], min[maxv], max[maxv]; 5 int main(){ 6 scanf("%d%d", &n, &S); 7 for(int i = 1; i <= n; ++i) scanf("%d", v+i); 8 min[0] = max[0] = 0; 9 for(int i = 1; i <= S; ++i) {min[i] = INF; max[i] = -INF;} 10 for(int i = 1; i <= S; ++i) 11 for(int j = 1; j <= n; ++j) if(v[j] <= i){ 12 if(min[i-v[j]] + 1 < min[i]) min[i] = min[i-v[j]] + 1; 13 if(max[i-v[j]] + 1 > max[i]) max[i] = max[i-v[j]] + 1; 14 } 15 printf("%d\n", min[S]); 16 printf("%d\n", max[S]); 17 return 0; 18 }
把每一件简单的事情做好,就是不简单;把每一件平凡的事情做好,就是不平凡!相信自己,创造奇迹~~