欢迎访问我的个人网站==》 jiashubing.cn

UVA 10405 Longest Common Subsequence (动态规划 LCS)

Longest Common Subsequence


Sequence 1:                

Sequence 2:                


Given two sequences of characters, print the length of the longest common subsequence of both sequences. For example, the longest common subsequence of the following two sequences:

abcdgh
aedfhr
is adh of length 3.

Input consists of pairs of lines. The first line of a pair contains the first string and the second line contains the second string. Each string is on a separate line and consists of at most 1,000 characters

For each subsequent pair of input lines, output a line containing one integer number which satisfies the criteria stated above.

Sample input

a1b2c3d4e
zz1yy2xx3ww4vv
abcdgh
aedfhr
abcdefghijklmnopqrstuvwxyz
a0b0c0d0e0f0g0h0i0j0k0l0m0n0o0p0q0r0s0t0u0v0w0x0y0z0
abcdefghijklmnzyxwvutsrqpo
opqrstuvwxyzabcdefghijklmn

Output for the sample input

4
3
26
14

题目大意:求最长公共子序列
设d[i][j]为A1,A2...Ai和B1,B2...Bj的LCS长度,则的d[i][j]=max{d[i-1][j],d[i][j-1]},如果A[i]=B[j],d[i][j]=max{d[i][j],d[i-1][j-1]+1},边界条件是最外层为0
时间复杂度为O(nm),n、m分别为序列A、B的长度
View Code
 1 # include<stdio.h>
 2 # include<string.h>
 3 # define maxn 1005        //这样定义max函数,是不是就不用考虑a,b的类型了
 4 # define max(a,b) a>b?a:b
 5 int dp[maxn][maxn];
 6 char a[maxn],b[maxn];
 7 int main(){
 8     int lena,lenb,i,j;
 9     while(gets(a)&&gets(b)){    //题目中这里不能用scanf,只能用gets输入
10         lena=strlen(a);
11         lenb=strlen(b);
12 
13         for(i=0;i<=lena;i++)
14             for(j=0;j<=lenb;j++)
15                 dp[i][j] = 0;
16             
17             for(i=1;i<=lena;i++)
18             {
19                 for(j=1;j<=lenb;j++)
20                 {
21                     dp[i][j] = max(dp[i-1][j],dp[i][j-1]);    
22                     if(a[i-1]==b[j-1])                        
23                         dp[i][j] = max(dp[i][j] , dp[i-1][j-1] + 1);
24                 }            
25             }    
26             
27             printf("%d\n",dp[lena][lenb]);
28     }
29     return 0;
30 }

 

 
posted @ 2013-04-30 11:17  贾树丙  阅读(414)  评论(0编辑  收藏  举报