ZOJ 2744 Palindromes(动态规划)
A regular palindrome is a string of numbers or letters that is the same forward as backward. For example, the string "ABCDEDCBA" is a palindrome because it is the same when the string is read from left to right as when the string is read from right to left.
Now give you a string S, you should count how many palindromes in any consecutive substring of S.
Input
There are several test cases in the input. Each case contains a non-empty string which has no more than 5000 characters.
Proceed to the end of file.
Output
A single line with the number of palindrome substrings for each case.
Sample Input
aba
aa
Sample Output
4
3
做了一下午的动态规划,才发现懂得只有那么一点点,大部分还是百度出来才能理解状态转移方程,这一道,算是自己思考的最多的一道吧
令d[i][j]表示这一串字符从第i个到第j个字符组成的串是否是回文。
如果 i 到 j 组成的串字符超过了3个,则必须满足 i-1 到j-1 个字符组成的串是回文,它才有可能是回文
初始条件是:数组所有数据为0
1 # include<stdio.h> 2 # include<string.h> 3 # define maxn 5001 4 char s[maxn]; 5 bool dp[maxn][maxn]; 6 7 int main() 8 { 9 int len,ans,i,j,k; 10 while(scanf("%s",s)!=EOF) 11 { 12 len=strlen(s); 13 ans=len; 14 memset(dp,0,sizeof(dp)); 15 for(k=1;k<len;k++) 16 { 17 for(i=0;i<len-k;i++) 18 { 19 j=i+k; 20 dp[i][j]=0; 21 if(s[i]==s[j]) 22 { 23 if(i+1 <j-1) 24 { 25 if(dp[i+1][j-1]) 26 { 27 dp[i][j]=1; 28 ans++; 29 } 30 } 31 else 32 { 33 dp[i][j]=1; 34 ans++; 35 } 36 } 37 } 38 } 39 printf("%d\n",ans); 40 } 41 return 0; 42 }